The maximum size of ingested ball-shaped particles was determined in three species of adult dung feeding beetle: Anoplotrupes (Geotrupes) stercorosus and Geotrupes spiniger (Geotrupidae, Geotrupinae) and Sphaeridium lunatum (Hydrophilidae, Sphaeridiinae). Maximum diameters were 40-65 µm, 60-75 µm and 16-19 µm in A. stercorosus, G. spiniger and S. lunatum, respectively, and it was concluded that these beetles feed in the same way as found in previous studies on coprophagous scarabaeids (Scarabaeinae and Aphodiinae). Coarse particles, mainly indigestible plant fragments, are rejected by an unknown filtering mechanism, and only very small particles are actually ingested. The two geotrupids, however, tolerate somewhat larger particles than do scarabaeines of similar size. This may reflect a lower degree of specialisation towards dung feeding in the geotrupids than in the scarabaeines. In several ways, the mouthparts of the coprophagous Scarabaeidae, Geotrupidae and Hydrophilidae show essentially the same morphological modifications that must be adaptations for dung feeding. For the hydrophilid (Sphaeridium), such modifications are described for the first time. They include asymmetric mandibular molars (right convex, left concave), fitting exactly into each other, with highly specialised surfaces that may concentrate the food prior to ingestion by squeezing fluid out of it. Other examples are the conjunctives (scarabaeids and geotrupids) or similar structures (the hydrophilid) and the large, hairy, pad-like distal lobes of the maxillar galeae. Provided that current views on the evolutionary history of these beetles are correct, dung feeding has arisen independently in the Scarabaeidae, Geotrupidae and Hydrophilidae. If so, the feeding on very small particles and the concomitant modifications of mouthparts in these three groups must be results of parallel evolution.
The aim of this paper is to prove two new uncertainty principles for the Dunkl-Gabor transform. The first of these results is a new version of Heisenberg's uncertainty inequality which states that the Dunkl-Gabor transform of a nonzero function with respect to a nonzero radial window function cannot be time and frequency concentrated around zero. The second result is an analogue of Benedicks' uncertainty principle which states that the Dunkl-Gabor transform of a nonzero function with respect to a particular window function cannot be time-frequency concentrated in a subset of the form $S\times \mathcal B(0,b)$ in the time-frequency plane $\mathbb R^d\times \widehat {\mathbb R}^d$. As a side result we generalize a related result of Donoho and Stark on stable recovery of a signal which has been truncated and corrupted by noise.
High resolution and high signal to noise ratio CCD observations
of 59 Cyg show periodic variations in the radial velocities of
the components of Hα-line, i.e. of the absorption component,
and of the intensity ratio of the blue and red emission components. The period 29.14 d suggest duplicity of this star.
In this study the compressive strength and durability of soft clay soil stabilized with halloysite nanotubes are investigated. Halloysite nanotubes are novel 1D natural nanomaterials which are widely used in reinforcing polymer, pollution remediation, and as nanoreactors for biocatalyst. The wide use of halloysite nanotubes is due to their high aspect ratio, appropriate mechanical strength, high thermal stability, nature-friendly and cost-effectiveness. However, the use of halloysite nanotubes as a stabilizing agent for improving the durability of soil is not clear. In this research, halloysite nanotubes was used in the amounts of 2%, 5% and 10% by the weight of dried soil. Unconfined compressive strength, wet/dry cycles and freeze/thaw cycles tests were performed to evaluate the strength and durability of stabilized soft clay soil. Experimental results showed that halloysite nanotubes considerably improves the compressive strength and durability of soft clay soil. The optimum amount of halloysite nanotubes for soil stabilizing in terms of compressive strength and durability was 5%. The compressive strength of soft clay increased as much as 129% by applying 5% halloysite nanotubes. Also, the specimen containing 5% halloysite nanotubes showed the least strength loss after wet/dry and freeze/thaw cycles. The soil sample containing 5% halloysite nanotubes lost 20% of its initial compressive strength after 8 cycles of freezing and thawing, while the soil sample without any halloysite content lost 100% of its compressive strength after the same number of freezing and thawing. Based on the obtained results, the use of halloysite nanotubes in order to enhance the strength and durability of soft clay is strongly recommended., Tavakolipour Masoud, Salemi Niloofar., and Obsahuje bibliografické odkazy