A greenhouse experiment examined whether clonal integration improves photosynthesis of ramets of alligator weed [Alternanthera philoxeroides (Mart.) Griseb.], a widespread invasive clonal plant in China, in heterogeneous (He) nutrient habitats. The connected pairs of ramets experienced different nutrient levels [high homogeneous (Ho) nutrient, low Ho nutrient, and two He nutrient treatments]. Clonal integration significantly improved the net photosynthetic rate, stomatal conductance, transpiration rate, and minimal and maximal chlorophyll fluorescence of ramets of alligator weed in low nutrient condition. These characteristics may contribute to the success of the ramets of alligator weed in invading contrasting habitats. The clonal integration of the invasive clonal plants may contribute significantly to their invasiveness. and J. Liu ... [et al.].
The convulsant effects of four doses of picrotoxin (PX) - 2, 3, 4, and 6 mg/kg s.c. - were evaluated in the first part of the study. The 4- mg/kg dose, which elicited minimal seizures in all animals, generalized tonic-clonic (major) seizures in 75 % of rats and fatal outcome in 69 % of rats, was chosen for the second part, i.e. for testing the anticonvulsant action of clonazepam (Rivotril1* Roche, 0.1 or 1 mg/kg i.p.). Clonazepam exhibited a dose-dependent action against PX-induccd seizures, being more efficient against major than against minimal seizures.
Walnut (Juglans regia L.) plantlets were incubated during micropropagation in standard vessels (quasi confmed vessels) or in aerated vessels flushed with 360 or 20 000 cm^(C02) under irradiances of 70 (LI) and 250 (HI) pmol m"^ s'*. Plantlet morphology was strongly affected by the environment; leaf surface was increased, but shoot elongation and number of stems were reduced after increasing the irradiance of culture. Gross photosynthesis (Pq) capacity measured by using the •®02 isotope and mass-spectrometry techniques was increased by increasing photosynthetic photon flux (PPF) and CO2 concentration. Plantlets exhibited a potential for photorespiratory activity and Mehler-type reaction and a high rate of mitochondrial respiration in all vessel types and irradiances. When a long-term HI was applied, gas exchange rates (Pq and O2 uptake) were reduced in most of the vessel and PPF conditions, except in quasi confmed vessels. Under all the growth conditions, net photosynthetic rate (P^) was zero or slightly positive and the dry matter accumulation was very similar. Changes in O2 exchange, growth rate or enzyme activities linked to carbon fixation that were induced by changes in PFD and CO2 concentration showed that the photosynthetic characteristics of plantlets were typical for hetero-mixotrophic tissues.
The effects of CO2 concentration on spore germination, growth, and net photosynthetic rate (PN) of gametophytes of a tropical epiphytic fern, Pyrrosia piloselloides, were investigated over a 100-d period. Increasing CO2 concentration stimulated spore germination and enhanced gametophytic growth. The appearance of sexual organs and formation of sporophytes were accelerated with higher CO2 during growth. Radiant energy saturated PN and dark respiration rate also increased with increasing CO2 concentrations during growth. and Bee-Lian Ong, C. K-K. Koh, Yeow-Chin Wee.
The role of microtubules in the secretory processes in the tegument of adult trematode Fasciola hepatica L. is studied by estimating the effects of colchicine, a substance known to disrupt microtubules, on the number of T2 vesicles. Tissue slices of Ihe worm are incubated in Hedon-Fleig medium with or without 5 x 10'4M colchicine. The dynamics of the colchicine-provoked secretory block is examined by morphometry on samples processed for electron microscopy. T2 vesicles are estimated as a total number or separately within three levels (apical, sub-apical and central) of the distal tegument. The secretory block is demonstrated as reduction in the total number of T2 vesicles. The separate counting within three levels of the distal tegument demonstrates in control samples a trend of sub-apical condensation of T2 vesicles. This pattern of T2 distribution remains unchanged in colchicine-treated samples in spite of the reduction of the mean T2 counts within each of the levels examined. The data illustrate the role of microtubules in both the tegumental transport of secretory vesicles and the stratification of the organelles within the tegument.
Changes in various parameters of room temperature chlorophyll fluorescence were found during cold acciimation at 2.5 of Brassica napiis L, var. oleifera plants. At the beginning of cold stress the non-radiative energy dissipation was enhanced, and afterwards, the photochemistry was affected. After prolonged cold acciimation the fiill recovery of photochemical activity was observed when the plants had been transferred to higher temperature (20/15 oC) for several days.
Two cultivars of Capsicum annuum L. were acclimated for 5 d at sub-optimal temperature (14 °C) and irradiance of 250 µmol m-2 s-1. This cold-hardening resulted in some reduction in the extent of photoinhibition during an 8 h exposure to high irradiance at 4 °C. Obvious differences were observed between non-hardened leaves (NHL) and cold-hardened leaves (CHL) in the recovery under low irradiance at room temperature. The CHL of both cultivars recovered faster than NHL, especially during the initial fast phase of recovery. Compared with NHL, the total content of carotenoids (Cars), based on chlorophyll, Chl (a+b), and the proportions of xanthophyll cycle pigments referred to total Cars increased in CHL, mainly due to an increase of violaxanthin (V) + antheraxanthin (A) + zeaxanthin (Z) content per mol Chl (a+b). Faster development and a higher non-photochemical quenching (NPQ) of Chl fluorescence, related to a stronger deepoxidation of the larger xanthophyll cycle pool in NHL, could act as a major defence mechanism to reduce the formation of reactive oxygen species during severe chilling. This is suggested by higher content of Z or Z+A in photoinhibition as well as by its rapid decline during the initial fast phase of recovery. In contrast to the chilling-sensitive cv. 0004, the chilling-tolerant cv. 1141 did more easily acclimate its photosynthetic apparatus to low temperatures. and Peng Liu ... [et al.].
The effect of the oviposition deterring pheromone (ODP) in the larval tracks of conspecific and heterospecific ladybirds on oviposition in Harmonia axyridis Pallas was studied in semi natural conditions. Gravid females of H. axyridis were deterred from ovipositing on plants contaminated with conspecific larval tracks, but not on those with heterospecific tracks. H. axyridis females spent significantly less time on plants contaminated with conspecific ODP than on those with heterospecific ODP. This behaviour may account for why fewer eggs were laid on plants contaminated with conspecific ODP.
The effects of 20 and 50 µM concentrations of Cu and Cd on photosynthesis in cucumber (Cucumis sativus L.) cotyledons were studied by the measurements of gas exchange characteristics, chlorophyll (Chl) fluorescence parameters, photosynthetic pigment contents, and two Calvin cycle enzymes activities: glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 3-phosphoglyceric acid kinase (PGK). To minimize indirect metal action, seedlings were treated with metals in the stage of green, fully developed cotyledons. The metals reached the cotyledon tissue after 48 h of treatments, though symptoms of metal action were not visible at that time. The effect of metals on the light phase of the photosynthesis parameters such as potential efficiency of photosystem 2 (PS2; Fv/Fm), and photochemical and nonphotochemical quenching of Chl fluorescence (qP and qNP) was negligible. In contrast, a decrease of PS2 quantum efficiency (ΦPS2) was much more noticeable. Changes in the pigment contents were slight, as only 50 µM Cd decreased Chl a and b contents in small extent. On the contrary, metals in both concentrations drastically decreased (50 and more % of control) the net photosynthetic rate and the stomatal conductance, but not the internal CO2 concentration. The activities of both GAPDH and PGK were also decreased by metals, although the effect on PGK was more prominent, particularly on its potential activity (dithiothreitol in extraction and incubation media). Hence Cu and Cd affected the synthesis of enzyme proteins rather than they influenced their modifications. The effects of both metals on most of the measured photosynthesis parameters were similar, but the accumulation of Cd in the cotyledons was significantly higher than Cu accumulation. Thus Cu was more toxic for the photosynthesis of cucumber cotyledons than Cd. and M. Burzyński, A. Żurek.
This study was designed to determine whether the supplement of superoxide dismutase (SOD) could attenuate strain-induced oxidative damage to skeletal muscle in rats. Experimental animals were injured in right gastrocnemius muscles by a strain injury model. SOD-treated groups were given Cu/Zn SOD 10 000 U/kg body weight per day since injured, while control groups were given normal saline. Parameters of antioxidant and muscle damage were detected in plasma 3 and 7 days postinjury. The injured muscles were removed and fixed for histology observation and immunohisto-chemistry assay of desmin. The results showed that plasma levels of SOD, glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC) in SOD group were significantly higher than in the saline group on day 3 or 7, while the plasma creatine kinase (CK) and malondialdehyde (MDA) were lower in the SOD group than in the saline group. The histological examination of muscle sections revealed a lower degree of damage in the SOD group in which the expression level of desmin was higher than in the saline group. It is suggested that SOD supplement may attenuate strain-induced muscle damage and facilitate its regeneration