The uptake, reflux and excretion of bromosulfophthalein (BSP) were studied on a model of total warm ischaemia for 30 min (group 1) or 60 min (group 2) followed by reperfusion for 45 min in the isolated perfused rat liver of unfasting rats. In group 1, the BSP hepatic uptake was comparable to control livers (30 s ischaemia plus 45 min reperfusion), but was significantly reduced in group 2. The reflux of BSP from liver to perfusate in group 1 and group 2 resulted in the appearance of secondary concentration time peaks of BSP in the reservoir perfusate. This result suggests that ischaemia-reperfusion induced a qualitative change in BSP pharmacokinetics. Excretion of the dye into bile was significantly impaired in group 2 only. The leakage of lactate dehydrogenase into the perfusate was increased moderately in both group 1 and group 2 in comparison to the controls, suggesting a low degree of liver parenchymal injury. In conclusion, the results of this investigation showed that BSP pharmacokinetics were not only undergoing quantitative changes but also a qualitative change in the model of ischaemia-reperfusion injury of the liver obtained from fed rats and may thus serve as a highly sensitive indicator of liver viability.
Treated water from wastewater treatment plants that is increasingly used for irrigation may contain pharmaceuticals and, thus, contaminate soils. Therefore, this study focused on the impact of soil conditions on the root uptake of selected pharmaceuticals and their transformation in a chosen soil–plant system. Green pea plants were planted in 3 soils. Plants were initially irrigated with tap water. Next, they were irrigated for 20 days with a solution of either atenolol (ATE), sulfamethoxazole (SUL), carbamazepine (CAR), or all of these three compounds. The concentrations of pharmaceuticals and their metabolites [atenolol acid (AAC), N1-acetyl sulfamethoxazole (N1AS), N4-acetyl sulfamethoxazole (N4AS), carbamazepine 10,11-epoxide (EPC), 10,11-dihydrocarbamazepine (DHC), trans-10,11- dihydro-10,11-dihydroxy carbamazepine (RTC), and oxcarbazepine (OXC)] in soils and plant tissues were evaluated after harvest. The study confirmed high (CAR), moderate (ATE, AAC, SUL), and minor (N4AC) root uptake of the studied compounds by the green pea plants, nonrestricted transfer of the CAR species into the different plant tissues, and a very high efficiency in metabolizing CAR in the stems and leaves. The results showed neither a synergic nor competitive influence of the application of all compounds in the solution on their uptake by plants. The statistical analysis proved the negative relationships between the CAR sorption coefficients and the concentrations of CAR, EPC, and OXC in the roots (R = –0.916, –0.932, and –0.925, respectively) and stems (R = –0.837, –0.844, and –0.847, respectively).