The `corpipe23-corefud1.1-231206` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 (https://github.com/ufal/crac2023-corpipe). It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no _corpus id_ on input), so it can be used to predict coreference in any `mT5` language (for zero-shot evaluation, see the paper). However, note that the empty nodes must be present already on input, they are not predicted (the same settings as in the CRAC23 shared task).
The `corpipe23-corefud1.2-240906` is a `mT5-large`-based multilingual model for coreference resolution usable in CorPipe 23 <https://github.com/ufal/crac2023-corpipe>. It is released under the CC BY-NC-SA 4.0 license.
The model is language agnostic (no corpus id on input), so it can be in theory used to predict coreference in any `mT5` language. However, the model expects empty nodes to be already present on input, predicted by the https://www.kaggle.com/models/ufal-mff/crac2024_zero_nodes_baseline/.
This model was present in the CorPipe 24 paper as an alternative to a single-stage approach, where the empty nodes are predicted joinly with coreference resolution (via http://hdl.handle.net/11234/1-5672), an approach circa twice as fast but of slightly worse quality.