This paper examines the changes in the species composition of aphids living in dry calcareous grasslands in Central Europe over a 25-year period. To the best of our knowledge, this is the first analysis of this type in the world that takes into account both previous and current data on species richness as well as groups of aphids that are distinguishable on the basis of biological and ecological criteria such as host-alternation and feeding types, life cycle, ecological niche, symbiosis with ants and their ecological functional groups. Over the period of more than 25 years, there has been a significant decrease in aphid α-diversity, from 171 to 105 species. The gain, which is in species not previously recorded, was 17 taxa. The loss of biodiversity occurred despite the fact that these habitats are protected and are valuable regional biodiversity hotspots. The losses are mostly related to intensive human activity in adjacent areas, which, unfortunately, has resulted in the isolation of these small, protected environmental islands by the removal of ecological corridors. Since, as is shown in this study, the frequencies between individual biological and ecological groups of aphids have been retained, it would be possible to restrict this loss of biodiversity if appropriate actions are taken., Barbara Osiadacz, Roman Hałaj, Damian Chmura., and Obsahuje bibliografii
Over the last two decades my colleagues and I have assembled the literature on a good percentage of most of the coccidians (Conoidasida) known, to date, to parasitise: Amphibia, four major lineages of Reptilia (Amphisbaenia, Chelonia, Crocodylia, Serpentes), and seven major orders in the Mammalia (Carnivora, Chiroptera, Lagomorpha, Insectivora, Marsupialia, Primates, Scandentia). These vertebrates, combined, comprise about 15,225 species; only about 899 (5.8%) of them have been surveyed for coccidia and 1,946 apicomplexan valid species names or other forms are recorded in the literature. Based on these compilations and other factors, I extrapolated that there yet may be an additional 31,381 new apicomplexans still to be discovered in just these 12 vertebrate groups. Extending the concept to all of the other extant vertebrates on Earth; i.e. lizards (6,300 spp.), rodents plus 12 minor orders of mammals (3,180 spp.), birds (10,000 spp.), and fishes (33,000 spp.) and, conservatively assuming only two unique apicomplexan species per each vertebrate host species, I extrapolate and extend my prediction that we may eventually find 135,000 new apicomplexans that still need discovery and to be described in and from those vertebrates that have not yet been examined for them! Even doubling that number is a significant underestimation in my opinion.
Biofeedback is a treatment technique in which people are trained to improve their physiological functions by using different signals from their own bodies, e.g. from skin, heart (ECG), muscles (EMG), brain (EEG) etc. Psychotherapeutists use it to decrease intrapsychic tension in anxious and depressive patients and epileptics or learn to relax boys who suffered from attention deficit and hyperactivity disorders. The main system for consciousness (thalamocortical reverberation circuit) generates whole brain electromagnetic frequencies permanently (1-30 Hz = EEG activity). But we choose a specific frequency band, e.g. SMR (Sensory Motor Rhythm = 13-18 Hz) and these SMR episodes are rewarded by success in a simultaneously watched TV game. SMR is then repeated still more often and brings into electrogenesis and into psyche tendency its own property, which is motor inhibition and increasing attention. This is the aim of the therapeutical learning process.
Eukaryotic cytochrome c oxidase (CcO), the terminal component of the mitochondrial electron transport chain is a heterooligomeric complex that belongs to the superfamily of heme-copper containing terminal oxidases. The enzyme, composed of both mitochondrially and nuclear encoded subunits, is embedded in the inner mitochondrial membrane, where it catalyzes the transfer of electrons form reduced cytochrome c to dioxygen, coupling this reaction with vectorial proton pumping across the inner membrane. Due to the complexity of the enzyme, the biogenesis of CcO involves a multiplicity of steps, carried out by a number of highly specific gene products. These include mainly proteins that mediate the delivery and insertion of copper ions, synthesis and incorporation of heme moieties and membrane-insertion and topogenesis of constituent protein subunits. Isolated CcO deficiency represents one of the most frequently recognized causes of respiratory chain defects in humans, associated with severe, often fatal clinical phenotype. Here we review recent advancements in the understanding of this intricate process, with a focus on mammalian enzyme.
Vascular flora of 71 artificial islands of varying agewas analyzed in 22 fishponds, Třeboň Basin, the Czech Republic. Data on species richness were interpreted in terms of Wilson’s (1969) hypothesis on the development of biotic communities. An increase in species richness during the non-interactive stage (one to two years) and a decrease in the interactive stage (three to six years) were both statistically significant. As predicted, by Wilson’s hypothesis, there was also an increase in species richness in the assortative stage (seven to >50 years), however, this trend was not significant. This successional pattern was confirmed by the vegetation development recorded on 34 re-sampled islands. For these islands the positive change in species richness during the assortative stage was significant based on both paired t- and binomial tests. Contributions of island area, elevation, and isolation during individual successional stages were evaluated. As a whole, this is probably the first clear confirmation of Wilson’s hypothesis for vascular plant communities on islands.
Species–area relationships and nestedness patterns were studied in three groups of small terrestrial vertebrates (mammals, reptiles, amphibians) on 14 landbridge islands of the eastern Adriatic. Islands ranged in surface area between 15 and 410 km2 and contained from eight to 36 species from a total species pool of 48. Reptiles were the most species rich group (S = 28), and had more species than mammals (S = 13) and amphibians (S = 7) combined. Island surface area predicted species richness best in reptiles (r2 = 0.79) and most poorly in amphibians (r2 = 0.52). Mammals showed a significantly lower slope of the species–area curve than amphibians and reptiles, and thus accumulated species counts with increase in area at the lowest rate. Nestedness patterns in all groups were significantly more organised than expected by chance. Amphibian nested structure points to extinction dominated and well insularised populations with no subsequent recolonisations. Frequent unexpected presences and absences in the nestedness patterns of mammals and reptiles suggest complex biogeographic histories for these two groups, with several factors putatively in operation: heterogeneity in habitats and the original source fauna, post- isolation immigrations and differential extinction rate due to human-caused habitat degradation.
The tenebrionid beetles on 25 circum-Sicilian islands were studied to determine the influence of island geographical and landscape features on three main intercorrelated biogeographical patterns: (1) species richness, studied using species-area and species environment relationships, (2) species assemblage composition, investigated using Canonical Correspondence Analysis (CCA), and (3) inter-site faunal similarity, investigated using Canonical Correlation Analysis (CANCOR) applied to multidimensional scaling of inter-island faunal dissimilarities. Species richness was mostly influenced by island area and landscape heterogeneity (expressed using various indices of diversity based on land cover categories). When species identities were considered in the CCA, no substantial effect of landscape was detected. Current island isolation did not have a strong influence on species richness, but has a distinct effect in determining species assortments on the remotest islands. Historical influences of Pleistocene landbridge connections were not detectable in species richness relationships using geographical variables in species richness analyses or in assemblage gradients in the CCA, but emerged distinctly from inter-island similarities in the CANCOR. and Simone Fattorini.
To date, thousands of microRNAs (miRNAs) and their precursors (pre-miRNAs) have been identified in insects and their nucleotide sequences deposited in the miRBase database. In the present work, we have systematically analyzed, utilizing bioinformatics tools, the featural differences between human and insect pre-miRNAs, as well as differences across 24 insect species. Results showed that the nucleotide composition, sequence length, nucleotides preference and secondary structure features between human and insects were different. Subsequently, with the aid of three available SVM-based prediction programs, pre-miRNA sequences were evaluated and given corresponding scores. Thus it was found that of 2633 sequences from the 24 chosen insect species, 2229 (84.7%) were successfully recognized by the Mirident classifier, higher than Triplet-SVM (72.5%) and PMirP (72.6%). In contrast, four species, including the domesticated silkworm, Bombyx mori L., the fruit fly, Drosophila melanogaster Meigen, the honeybee, Apis mellifera L. and the red flour beetle, Tribolium castaneum (Herbst), were found to be largely responsible for the poor performance of some sequence matching. Compared with other species, B. mori especially showed the worst performance with the lowest average MFE index (0.73). Collectively these results pave the way for understanding specificity and diversity of miRNA precursors in insects, and lay the foundation for the further development of more suitable algorisms for insects., Li, Jisheng ... [et al.]., and Obsahuje seznam literatury