Manual classification of errors of English-Slovak translation according to the classification introduced by Vilar et al. [1]. 50 sentences randomly selected from WMT 2011 test set [2] were translated by 3 MT systems described in [3] and MT errors were manually marked and classified. Reference translation is included.
References:
[1] David Vilar, Jia Xu, Luis Fernando D’Haro and Hermann Ney. Error Analysis of Machine Translation Output. In International Conference on Language Resources and Evaluation, pages 697-702. Genoa, Italy, May 2006.
[2] http://www.statmt.org/wmt11/evaluation-task.html
[3] Petra Galuščáková and Ondřej Bojar. Improving SMT by Using Parallel Data of a Closely Related Language. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fifth International Conference Baltic HLT 2012, volume 247 of Frontiers in AI and Applications, pages 58-65, Amsterdam, Netherlands, October 2012. IOS Press. and This work has been supported by the grant Euro-MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic)
Statistical component of Chimera, a state-of-the-art MT system. and Project DF12P01OVV022 of the Ministry of Culture of the Czech Republic (NAKI -- Amalach).
This corpora is part of Deliverable 5.5 of the European Commission project QTLeap FP7-ICT-2013.4.1-610516 (http://qtleap.eu).
The texts are Q&A interactions from the real-user scenario (batches 1 and 2). The interactions in this corpus are available in Basque, Bulgarian, Czech, English, Portuguese and Spanish.
The texts have been automatically annotated with NLP tools, including Word Sense Disambiguation, Named Entity Disambiguation and Coreference resolution. Please check deliverable D5.6 in http://qtleap.eu/deliverables for more information.
Testing set from WMT 2011 [1] competition, manually translated from Czech and English into Slovak. Test set contains 3003 sentences in Czech, Slovak and English. Test set is described in [2].
References:
[1] http://www.statmt.org/wmt11/evaluation-task.html
[2] Petra Galuščáková and Ondřej Bojar. Improving SMT by Using Parallel Data of a Closely Related Language. In Human Language Technologies - The Baltic Perspective - Proceedings of the Fifth International Conference Baltic HLT 2012, volume 247 of Frontiers in AI and Applications, pages 58-65, Amsterdam, Netherlands, October 2012. IOS Press. and The work on this project was supported by the grant EuroMatrixPlus (FP7-ICT-
2007-3-231720 of the EU and 7E09003 of the Czech Republic)