2’(3’)-0-[N- [2- [3- [5-fluoresceinyl] thioureido] ethyl] carbamoyl] adenosine 5’-triphosphate (FEDA-ATP), a spectroscopic tool used for studying skeletal muscle myosin ATPase subfragment 1, was applied to Na+/K+- ATPase (EC 3.6.1.37). In contrast to the myosin subfragment, we found that FEDA-ATP is not a substrate for Na + /K + -ATPase. On the other hand, FEDA-ATP showed an affinity for both the low (E2, K<j = 2001MM) and the high (Ei, Kd = 22,«M) affinity ATP-binding sites. When the microscopic affinities of FEDA-ATP were used for calculating the macroscopic affinity in the overall reaction according to Kj = (KdEl*KdE2)1/2, the experimentally measured inhibition constant of 66,wM was obtained. To evoke irreversible binding inhibitors, FEDA-ATP was transferred in its chromium (III) and cobalt(III) complex analogs, which are suitable tools for labelling the ATP binding sites of Na + /K+ -ATPase in a specific way.
An edge of $G$ is singular if it does not lie on any triangle of $G$; otherwise, it is non-singular. A vertex $u$ of a graph $G$ is called locally connected if the induced subgraph $G[N(u)]$ by its neighborhood is connected; otherwise, it is called locally disconnected. In this paper, we prove that if a connected claw-free graph $G$ of order at least three satisfies the following two conditions: (i) for each locally disconnected vertex $v$ of degree at least $3$ in $G,$ there is a nonnegative integer $s$ such that $v$ lies on an induced cycle of length at least $4$ with at most $s$ non-singular edges and with at least $s-5$ locally connected vertices; (ii) for each locally disconnected vertex $v$ of degree $2$ in $G,$ there is a nonnegative integer $s$ such that $v$ lies on an induced cycle $C$ with at most $s$ non-singular edges and with at least $s-3$ locally connected vertices and such that $G[V (C)\cap V_{2} (G)]$ is a path or a cycle, then $G$ has a 2-factor, and it is the best possible in some sense. This result generalizes two known results in Faudree, Faudree and Ryjáček (2008) and in Ryjáček, Xiong and Yoshimoto (2010).
Let $\tau $ be a type of algebras. A valuation of terms of type $\tau $ is a function $v$ assigning to each term $t$ of type $\tau $ a value $v(t) \geq 0$. For $k \geq 1$, an identity $s \approx t$ of type $\tau $ is said to be $k$-normal (with respect to valuation $v$) if either $s = t$ or both $s$ and $t$ have value $\geq k$. Taking $k = 1$ with respect to the usual depth valuation of terms gives the well-known property of normality of identities. A variety is called $k$-normal (with respect to the valuation $v$) if all its identities are $k$-normal. For any variety $V$, there is a least $k$-normal variety $N_k(V)$ containing $V$, namely the variety determined by the set of all $k$-normal identities of $V$. The concept of $k$-normalization was introduced by K. Denecke and S. L. Wismath in their paper (Algebra Univers., 50, 2003, pp.107-128) and an algebraic characterization of the elements of $N_k(V)$ in terms of the algebras in $V$ was given in (Algebra Univers., 51, 2004, pp. 395--409). In this paper we study the algebras of the variety $N_2(V)$ where $V$ is the type $(2,2)$ variety $L$ of lattices and our valuation is the usual depth valuation of terms. We introduce a construction called the {\it $3$-level inflation} of a lattice, and use the order-theoretic properties of lattices to show that the variety $N_2(L)$ is precisely the class of all $3$-level inflations of lattices. We also produce a finite equational basis for the variety $N_2(L)$.