Several recent studies bring evidence of cell death enhancement in photodynamic compound loaded cells by ultrasonic treatment. There are a number of hypotheses suggesting the mechanism of the harmful ultrasonic effect. One of them considers a process in the activation of photosensitizers by ultrasonic energy. Because the basis of the photodynamic damaging effect on cells consists in the production of reactive oxygen species (ROS), we focused our study on whether the ultrasound can increase ROS production within cancer cells. Particularly, we studied ROS formation in ultrasound pretreated breast adenocarcinoma cells during photodynamic therapy in the presence of chloroaluminum phthalocyanine disulfonate (ClAlPcS2). Production of ROS was investigated by the molecular probe CM-H2DCFDA. Our results show that ClAlPcS2 induces higher ROS production in the ultrasound pretreated cell lines at a concentration of 100 μM and light intensity of 2 mW/cm2. We also observed a dependence of ROS production on photosensitizer concentration and light dose. These results demonstrate that the photodynamic effect on breast cancer cells can be enhanced by ultrasound pretreatment., H. Kolářová, R. Bajgar, K. Tománková, E. Krestýn, L. Doležal, J. Hálek., and Obsahuje bibliografii
Electrophysiological investigations in mice, particularly with altered myelination, require reference data of the nerve conduction velocity (CV). CVs of different fibre groups were determined in the hindlimb of anaesthetized adult mice. Differentiation between afferent and efferent fibres was performed by recording at dorsal roots and stimulating at ventral roots, respectively. Correspondingly, recording or stimulation was performed at peripheral hindlimb nerves. Stimulation was performed with graded strength to differentiate between fibre groups. CVs of the same fibre groups were different in different nerves of the hindlimb. CVs for motor fibres were for the tibial nerve (Tib) 38.5±4.0 m/s (Aγ: 16.7±3.0 m/s), the sural nerve (Sur) 39.3±3.1 m/s (12.0±0.8 m/s) and the common peroneal nerve (Per) 46.7±4.7 m/s (22.2±4.4 m/s). CVs for group I afferents were 47.4±3.1 m/s (Tib), 43.8±3.8 m/s (Sur), 55.2±6.1 m/s (Per) and 42.9±4.3 m/s for the posterior biceps (PB). CVs of higher threshold afferents, presumably muscle and cutaneous, cover a broad range and do not really exhibit nerve specific differences. Ranges are for group II 22-38 m/s, for group III 9-19 m/s, and for group IV 0.8-0.9 m/s. Incontrovertible evidence was found for the presence of motor fibres in the sural nerve. The results are useful as references for further electrophysiological investigations particularly in genetically modified mice with myelination changes., H. Steffens, P. Dibaj, E. D. Schomburg., and Obsahuje seznam literatury
Gluteal muscle contracture (GMC) is a chronic fibrotic disease of gluteal muscles due to multiple etiologies. The main pathologic process is characterized by proliferation of fibroblasts and excessive accumulation of collagen in the extracellular matrix of the muscle. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid and has been reported to be associated with various fibrotic diseases. However, the role of S1P in GMC remains unknown. Here in this articl e, High-perform ance liquid chromatography and immunohistochemistry were applied to evaluate S1P localization and expression in clinical samples from patients with GMC, Quantitative real time PCR, Western blot, and enzyme-linked immunosorbent assa y were used to explore the link between transforming growth factor-β 1 (TGF-β 1), plasminogen activator inhibitor-1 (PAI-1) and S1P. The results showed that S1P was enhanced in contraction band (CB) tissues. Studies using the cell proliferation and transformation assay indicated that exogenous S1P stimulated CB fibroblast proliferation in a time-depen dent manner and in higher concentration also in a dose-dependent manner. Furthermore, we demonstrated that S1P not only promoted collagen type I production, but also up-regulated mRNA and protein expression of transforming growth factor-β 1 and plasminogen activator inhibitor-1. These findings suggest that S1P may regulate increased synthesis of collagen and other fibrogenic factors, and significantly contributes to the process of gluteal muscle scarring in patients with GMC., A. Babicová ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Treatment with pertussis toxin (PTX) which eliminates the activity of Gi proteins effectively reduces blood pressure (BP) and vascular resistance in spontaneously hypertensive rats (SHR). In this study we have compared the functional characteristics of isolated arteries from SHR with and without PTX-treatment (10 μg/kg i.v., 48 h before the experiment). Rings of thoracic aorta, superior mesenteric artery and main pulmonary artery were studied under isometric conditions to measure the reactivity of these vessels to receptor agonists and to transmural electrical stimuli. We have found that the treatment of SHR with PTX had no effect on endothelium-dependent relaxation of thoracic aorta induced by acetylcholine. In PTX-treated SHR, the maximum contraction of mesenteric artery to exogenous noradrenaline was reduced and the dose-response curve to cumulative concentration of noradrenaline was shifted to the right. Similarly, a reduction in the magnitude of neurogenic contractions elicited by electrical stimulation of perivascular nerves was observed in the mesenteric artery from PTX-treated SHR. PTX treatment of SHR also abolished the potentiating effect of angiotensin II on neurogenic contractions of the main pulmonary artery. These results indicate that PTX treatment markedly diminishes the effectiveness of adrenergic stimuli in vasculature of SHR. This could importantly affect BP regulation in genetic hypertension., A. Zemančíková, J. Török, J. Zicha, J. Kuneš., and Obsahuje bibliografii a bibliografické odkazy
In hemodialyzed patients hormonal disturbances are known to occur. However, melatonin levels have not been completely studied. The aim of the study was to find whether changes in calcaemia affect melatonin secretion. For this reason we followed the nocturnal serum concentrations of melatonin and parathyroid hormone (PTH) in 9 hemodialyzed patients (6 women and 3 men, aged 37-65 years) both before and 1-3 months after parathyroidectomy at 6 p.m., 9 p.m., 11 p.m., 2 a.m., 5 a.m. and 7 a.m. At 6 p.m. blood samples to evaluate the levels of calcium and phosphate were also collected. Parathyroidectomy resulted in an increase in nocturnal melatonin levels. As expected, the parathyroidectomy was followed by considerable PTH decrease. PTH showed no nocturnal variation before or after parathyroidectomy. Calcium levels significantly decreased after the operation while phosphate levels increased. In summary, in hemodialyzed patients with hyperparathyroidism, parathyroidectomy significantly increases the nocturnal secretion of melatonin. Relationships between the pineal gland and parathyroid glands have yet to be elucidated., R. Kancheva, S. Sulková, F. Švára, M. Hill, L. Kanchev, I. Žofková., and Obsahuje bibliografii a bibliografické odkazy
Critical illness induces among other events production of proinflammatory cytokines that in turn interfere with insulin signaling cascade and induce insulin resistance on a postreceptor level. Recently, local renin-angiotensin system of adipose tissue has been suggested as a possible contributor to the development of insulin resistance in patients with obesity. The aim of our study was to determine local changes of the renin-angiotensin system of subcutaneous and epicardial adipose tissue during a major cardiac surgery, which may serve as a model of an acute stress potentially affecting endocrine function of adipose tissue. Ten patients undergoing elective cardiac surgery were included into the study. Blood samples and samples of subcutaneous and epicardial adipose tissue were collected at the beginning and at the end of the surgery. Blood glucose, serum insulin and adiponectin levels were measured and mRNA for angiotensinogen, angiotensin-converting enzyme and angiotensin II type 1 receptor were determined in adipose tissue samples using RT PCR. Cardiac surgery significantly increased both insulin and blood glucose levels suggesting the development of insulin resistance, while serum adiponectin levels did not change. Expression of angiotensinogen mRNA significantly increased in epicardial adipose tissue at the end of surgery relative to baseline but remained unchanged in subcutaneous adipose tissue. Fat expression of angiotensin-converting enzyme and type 1 receptor for angiotensin II were not affected by surgery. Our study suggests that increased angiotensinogen production in epicardial adipose tissue may contribute to the development of postoperative insulin resistance., T. Roubíček, M. Dolinková, J. Bláha, D. Haluzíková, L. Bošanská, M. Mráz, J. Křemen, M. Haluzík., and Obsahuje bibliografii a bibliografické odkazy
We studied the changes in seru m fibroblast growth factor-21 (FGF-21) concentrations, its mR NA, and protein expression in skeletal muscle and adipose tissue of 15 patients undergoing cardiac surgery. Blood samples were obtained: prior to initiation of anesthesia, prior to the start of extracorporeal circulation, upon completion of the surger y, and 6, 24, 48, and 96 hours after the end of the surgery. Tissue sampling was performed at the start and end of surgery. The mean baseline serum FGF-21 concentration was 63.1 (43.03-113. 95) pg/ml and it increased during surgery with peak 6 ho urs after its end [385.5 (274.55-761.65) pg/ml, p<0.001], and return ed to baseline value [41.4 (29.15-142.83) pg/ml] 96 hours afte r the end of the surgery. Serum glucose, insulin, CRP, IL-6, IL-8, MCP-1, and TNF-alpha concentrations significantly increased during the surgery. Baseline FGF-21 mRNA expression in skeletal muscle was higher than in both adipose tissue depots and it was not affected by the surgery. Epicardial fat FGF-21 mRNA increased after surgery. Muscle FGF-21 mRNA positively correlated with blood glucose levels at the end of the surgery. Our data suggest a possible role of FGF-21 in the regulation of glucose metabolism and insulin sensitivity in surgery-related stress., T. Kotulák ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Previously, increased diameter and enhanced myogenic tone were seen after 2-week 45º head-up (HUT2) in the rat. We studied the reversibility and the effect of extended tilt on this phenomenon using two experimental groups: HUT2 plus 2-week horizontal (HUT2HOR2), and 4-week tilting (HUT4). 4-weeks in normal cages (NC4) served as control. Diameter of saphenous vein (SV) in 2-20 mm Hg pressure range, wall and media thickness, endothelial and smooth muscle cell densities, and cell proliferation were measured. The diameter of SV from HUT4 was significantly larger compared with HUT2HOR2 or NC4 within the whole pressure range both in Krebs-Ringer (870.4±21.3 vs. 778.2±24.9 and 771.6±28.1 μm at 10 mm Hg, respectively) and in Ca2+-free solution. Myogenic and norepinephrine-induced vascular tone, wall and media thickness did not differ among the three groups. Endothelial cell density decreased in HUT4 (10.7±1.2) vs. HUT2HOR2 (15.1±1.0) and NC4 (15.3±0.6), while that of smooth muscle was unchanged. No cell proliferation marker was seen. In conclusion, both increased diameter and enhanced myogenic tone of SV seen in HUT2 proved to be reversible. HUT4 resulted in increased SV diameter, similarly to HUT2, however, vascular tone was not amplified. This suggests that a prolonged orthostatic load may readjust the function of smooth muscle., G. Raffai, C. Lódi, G. Illyés, G. Nádasy, E. Monos., and Obsahuje bibliografii a bibliografické odkazy
The heavy impact of obesity on the development and progression of cardiovascular disease has sparked sustained efforts to uncover the mechanisms linking excess adiposity to vascular dysfunction. Impaired vasodilator reactivity has been recognized as an early hemodynamic abnormality in obese patients, but also increased vasoconstrictor tone importantly contributes to their vascular damage. In particular, upregulation of the endothelin (ET)-1 system, consistently reported in these patients, might accelerate atherosclerosis and its complication, given the pro-inflammatory and mitogenic properties of ET-1. In recent years, a number of gut hormones, in addition to their role as modulators of food intake, energy balance, glucose and lipid metabolism, and insulin secretion and action, have demonstrated favorable vascular actions. They increase the bioavailability of vasodilator mediators like nitric oxide, but they have also been shown to inhibit the ET-1 system. These features make gut hormones promising tools for targeting both the metabolic and cardiovascular complications of obesity, a view supported by recent large-scale clinical trials indicating that novel drugs for type 2 diabetes with cardiovascular potential may translate into clinically significant advantages. Therefore, there is real hope that better understanding of the properties of gut-derived substances might provide more effective therapies for the obesity-related cardiometabolic syndrome., F. Schinzari, M. Tesauro, C. Cardillo., and Seznam literatury
Erythropoietin (EPO), known for its role in erythroid differentiation, has been suggested to have a direct protective role against a variety of neurotoxic insults. In the present study, we investigated the expression of EPO receptor (EPOR) and the number of EPORpositive cells in three encephalic regions (ventral mesencephalon, striatum, cortex) following lesion induced by 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP). C57BL/6 mice underwent intraperitoneal injection of MPTP at 24 h intervals for 5 days, and their brains were examined 1, 2, 4, 7, 14 or 21 days after the last injection. Western blot and immunohistochemistry analysis revealed that EPOR was dramatically up-regulated in the ventral mesencephalon, 4 days after MPTP insult until the day 21. In contrast, there was a baseline level of EPOR in the striatum and cortex. At subsequent time points after MPTP injury, the levels of EPOR in the two regions were not statistically different compared with those in normal animals. These results suggest that the regional specific up-regulation of EPOR at an early stage after MPTP stimulus may represent a pro-survival mechanism against neurotoxin injury in Parkinsonian model., Y. Wu ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy