Urbanization is one of the most extreme forms of land transformation. It is supposed to change the frequencies of species trait states in species assemblages. We hypothesize that the flora of urban and rural areas differs in the frequency of trait states and ask which traits enable a plant to cope with the urban environment. We tested our hypothesis in Germany, which was divided into grid-cells of ca 130 km2. We distinguished urbanized (with more than 33% urban land use; n = 59), agricultural (with more than 50% agricultural land use; n = 1365) and semi-natural (with more than 50% forest and semi-natural land use; n = 312) grid-cells and calculated the proportions of plant species per trait state in each grid-cell. Multiple linear regressions explained the log-transformed ratio of one proportion to another with land use (urban, agricultural, semi-natural) and the environmental parameters (climate, topography, soils and geology). Additionally, linear mixed effect models accounted for the effects of land use and biogeography and differences in sample size of the three grid-cell types. Urbanized and rural areas showed clear differences in the proportion of trait states. Urbanized grid-cells had e.g., higher proportions of wind-pollinated plants, plants with scleromorphic leaves or plants dispersed by animals, and lower proportions of insect-pollinated plants, plants with hygromorphic leaves or plants dispersed by wind than other grid-cells. Our study shows that shifts in land use can change the trait state composition of plant assemblages. Far-reaching urbanization might consequently homogenize our flora with respect to trait state frequency.
Carabid abundance, species richness and diversity were compared along an urban-rural gradient in Helsinki, Finland. Increased urbanization was found to result in significant reductions in species richness, though the reductions in abundance and diversity were not statistically significant. Forest habitat-specialist species were scarce in rural sites and virtually absent from urban and suburban sites. There was no evidence of higher diversity at intermediate disturbance levels (suburban sites), as predicted by the intermediate disturbance hypothesis. Species with flight ability and the ability to utilize open habitat were more predominant in urban and suburban sites. Flightless species were more predominant in rural and suburban sites. Carabid abundance data were sufficient to reveal the negative impact of urbanization, so similar studies could be conducted in regions where carabid taxonomy is poorly known. Species composition patterns do, however, provide invaluable information. To conclude, if biodiversity is to be maintained in urban areas, priority must be given to the provision of those habitat features which are essential for sensitive species, such as decaying wood and wet microhabitats. These must be incorporated into urban green networks in particular, if biodiversity and species other than common generalists are to benefit from them.