We compare the forcing-related properties of a complete Boolean algebra ${\mathbb B}$ with the properties of the convergences $\lambda _{\mathrm s}$ (the algebraic convergence) and $\lambda _{\mathrm {ls}}$ on ${\mathbb B}$ generalizing the convergence on the Cantor and Aleksandrov cube, respectively. In particular, we show that $\lambda _{\mathrm {ls}}$ is a topological convergence iff forcing by ${\mathbb B}$ does not produce new reals and that $\lambda _{\mathrm {ls}}$ is weakly topological if ${\mathbb B}$ satisfies condition $(\hbar )$ (implied by the ${\mathfrak t}$-cc). On the other hand, if $\lambda _{\mathrm {ls}}$ is a weakly topological convergence, then ${\mathbb B}$ is a $2^{\mathfrak h}$-cc algebra or in some generic extension the distributivity number of the ground model is greater than or equal to the tower number of the extension. So, the statement “The convergence $\lambda _{\mathrm {ls}}$ on the collapsing algebra ${\mathbb B}=\mathop {\mathrm {ro}} (^{<\omega }\omega _2)$ is weakly topological“ is independent of ZFC.
We introduce and discuss the test space problem as a part of the whole copula fitting process. In particular, we explain how an efficient copula test space can be constructed by taking into account information about the existing dependence, and we present a complete overview of bivariate test spaces for all possible situations. The practical use will be illustrated by means of a numerical application based on an illustrative portfolio containing the S&P 500 Composite Index, the JP Morgan Government Bond Index and the NAREIT All index.