The independent domination number $i(G)$ (independent number $\beta (G)$) is the minimum (maximum) cardinality among all maximal independent sets of $G$. Haviland (1995) conjectured that any connected regular graph $G$ of order $n$ and degree $\delta \le \frac{1}{2}{n}$ satisfies $i(G)\le \lceil \frac{2n}{3\delta }\rceil \frac{1}{2}{\delta }$. For $1\le k\le l\le m$, the subset graph $S_{m}(k,l)$ is the bipartite graph whose vertices are the $k$- and $l$-subsets of an $m$ element ground set where two vertices are adjacent if and only if one subset is contained in the other. In this paper, we give a sharp upper bound for $i(S_{m}(k,l))$ and prove that if $k+l=m$ then Haviland’s conjecture holds for the subset graph $S_{m}(k,l)$. Furthermore, we give the exact value of $\beta (S_{m}(k,l))$.
Let (G) and i(G) be the domination number and the independent domination number of G, respectively. Rad and Volkmann posted a conjecture that i(G)/ (G) 6 (G)/2 for any graph G, where (G) is its maximum degree (see N. J.Rad, L.Volkmann (2013)). In this work, we verify the conjecture for bipartite graphs. Several graph classes attaining the extremal bound and graphs containing odd cycles with the ratio larger than (G)/2 are provided as well., Shaohui Wang, Bing Wei., and Seznam literatury
From Corollary 3.5 in [Berkani, M; Sarih, M.; Studia Math. 148 (2001), 251– 257] we know that if S, T are commuting B-Fredholm operators acting on a Banach space X, then ST is a B-Fredholm operator. In this note we show that in general we do not have ind(ST) = ind(S) + ind(T), contrarily to what has been announced in Theorem 3.2 in [Berkani, M; Proc. Amer. Math. Soc. 130 (2002), 1717–1723]. However, if there exist U, V ∈ L(X) such that S, T, U, V are commuting and US + V T = I, then ind(ST) = ind(S) + ind(T), where ind stands for the index of a B-Fredholm operator.
Let $k\subseteq k'$ be a field extension. We give relations between the kernels of higher derivations on $k[X]$ and $k'[X]$, where $k[X]:=k[x_1,\dots ,x_n]$ denotes the polynomial ring in $n$ variables over the field $k$. More precisely, let $D=\{D_n\}_{n=0}^\infty $ a higher $k$-derivation on $k[X]$ and $D'=\{D_n'\}_{n=0}^\infty $ a higher $k'$-derivation on $k'[X]$ such that $D'_m(x_i)=D_m(x_i)$ for all $m\geq 0$ and $i=1,2,\dots ,n$. Then (1) $k[X]^D=k$ if and only if $k'[X]^{D'}=k'$; (2) $k[X]^D$ is a finitely generated $k$-algebra if and only if $k'[X]^{D'}$ is a finitely generated $k'$-algebra. Furthermore, we also show that the kernel $k[X]^D$ of a higher derivation $D$ of $k[X]$ can be generated by a set of closed polynomials.
The main purpose of this paper is to use the analytic method to study the calculating problem of the general Kloosterman sums, and give an exact calculating formula for it.
Let a \subseteq \mathbb{C} [x1, ..., xn] be a monomial ideal andJ(a^{c}) the multiplier ideal of a with coefficient c. Then J(a^{c}) is also a monomial ideal of \mathbb{C} [x1, ..., xn], and the equality J(a^{c}) = a implies that 0 < c < n + 1. We mainly discuss the problem when J (a) = a or J({a^{n = 1 - \varepsilon }}) = a for all 0 < ε < 1. It is proved that if J (a) = a then a is principal, and if J({a^{n = 1 - \varepsilon }}) = a holds for all 0 < ε < 1 then a = (x1, ..., xn). One global result is also obtained. Let ã be the ideal sheaf on \mathbb{P}^{n-1} associated with a. Then it is proved that the equality J (ã) = ã implies that ã is principal., Cheng Gong, Zhongming Tang., and Obsahuje seznam literatury
Let $D$ be a positive integer, and let $p$ be an odd prime with $p\nmid D$. In this paper we use a result on the rational approximation of quadratic irrationals due to M. Bauer, M. A. Bennett: Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209–270, give a better upper bound for $N(D, p)$, and also prove that if the equation $U^2-DV^2=-1$ has integer solutions $(U, V)$, the least solution $(u_1, v_1)$ of the equation $u^2-pv^2=1$ satisfies $p\nmid v_1$, and $D>C(p)$, where $C(p)$ is an effectively computable constant only depending on $p$, then the equation $x^2-D=p^n$ has at most two positive integer solutions $(x, n)$. In particular, we have $C(3)=10^7$.
We deal with the optimal portfolio problem in discrete-time setting. Employing the discrete It\^o formula, which is developed by Fujita, we establish the discrete Hamilton-Jacobi-Bellman (d-HJB) equation for the value function. Simple examples of the d-HJB equation are also discussed.
We give a sufficient condition for the oscillation of linear homogeneous second order differential equation $y^{\prime \prime }+p(x)y^{\prime }+q(x)y=0$, where $p(x), q(x)\in C[\alpha ,\infty )$ and $\alpha $ is positive real number.
A condition for solvability of an integral equation which is connected with the first boundary value problem for the heat equation is investigated. It is shown that if this condition is fulfilled then the boundary considered is 1⁄2-Hölder. Further, some simple concrete examples are examined.