Low temperature has a negative impact on plant cells and results in the generation of reactive oxygen species (ROS). In order to study the role of ascorbate under chilling stress, the response of an ascorbate-deficient Arabidopsis thaliana mutant vtc2-1 to low temperature (2°C) was investigated. After chilling stress, vtc2-1 mutants exhibited oxidative damage. An increase in the H2O2 generation and the production of thiobarbituric acid reactive substances (TBARS), and a decrease in chlorophyll content, the maximal photochemical efficiency of PSII (Fv/Fm) and oxidizable P700 were also noted. The ratio of ascorbate/dehydroascorbate and reduced glutathione/oxidzed glutathione in the vtc2-1 mutants were reduced, compared with the wild type (WT) plants. The activities of antioxidant enzymes, such as catalase (CAT) and ascorbate peroxidase (APX), and soluble antioxidants were lower in the vtc2-1 mutants than those in WT plants. These results suggested that the ascorbate-deficient mutant vtc2-1 was more sensitive to chilling treatment than WT plants. The low temperature-induced oxidative stress was the major cause of the decrease of PSII and PSI function in the vtc2-1 mutants. Ascorbate plays a critical role of defense without which the rest of the ROS defense network is unable to react effectively., L. Y. Wang ... [et al.]., and Obsahuje bibliografii
Previous evidence has demonstrated that vertical leaves of Styrax camporum, a woody shrub from the Brazilian savanna, have a higher net photosynthetic rate (PN) compared with horizontal leaves, and that it is detected only if gas exchange is measured with light interception by both leaf surfaces. In the present study, leaf temperature (T leaf), gas exchange and chlorophyll (Chl) a fluorescence with light interception on adaxial and also on abaxial surfaces of vertical and horizontal mature fully-expanded leaves subjected to water deficit (WD) were measured. Similar
gas-exchange and fluorescence values were found when the leaves were measured with light interception on the respective surfaces of horizontal and vertical leaves. WD reduced N values measured with light interception on leaf surfaces of both leaf types, but the effective quantum yield of PSII (ΦPSII) and the apparent electron transport rate (ETR) were reduced only when the leaves were measured with light interception on the adaxial surface. WD did not decrease the maximum quantum yield of PSII (Fv/Fm) or increase T leaf, even at the peak of WD stress. Vertical leaf orientation in S. camporum is not related to leaf heat avoidance. In addition, the similar P N values and the lack of higher values of ΦPSII and ETR in vertical compared with horizontal leaves measured with light interception by each of the leaf surfaces suggests that the vertical leaf position is not related to photoprotection in this species, even when subjected to drought conditions. The exclusion of this photoprotective role could raise the alternative hypothesis that diverse leaf angles sustain whole plant light interception efficiency increased in this species., A. M. Feistler, G. Habermann., and Obsahuje bibliografii
This study compared physiological and growth responses to water stress of two legume species during the seedling stage. Potted alfalfa (Medicago sativa L. cv. Algonquin) and milkvetch (Astragalus adsurgens Pall. cv. Pengyang earlymaturing vetch) seedlings were grown under well-watered [soil water content (SWC) maintained at 14.92% daily] or water-stressed conditions (drying) for 15 days. Net photosynthetic rate (PN), transpiration rate (E) and stomatal conductance (gs) of both species decreased parabolically. When SWC decreased to 7.2% and 10.3%, gs values for alfalfa and milkvetch were significantly different from those of the respective well-watered plants (p<0.05). When SWC decreased to 6.6% for alfalfa and 6.8% for milkvetch, leaf water potentials (ψL) were significantly different from those of the well-watered plants (p<0.05). Thus the difference between the SWC thresholds for a nonhydraulic root signal (nHRS) and a hydraulic root signal (HRS) were 0.6% and 3.5% for alfalfa and milkvetch, respectively. Milkvetch had a lower gs than alfalfa for a given SWC (p<0.05). Although alfalfa seedlings had a higher dry mass (DM) and root:shoot ratio (R/S) than milkvetch in both treatments (p<0.05), we concluded that milkvetch seedlings had greater drought tolerance than alfalfa. and B.-C. Xu ... [et al.].
In the past decades, it has become clear that superoxide radical (O2 .-) can be generated from photosystem II (PSII) during photosynthesis. Depending on the extent of its accumulation, O2 .- plays an important role in plant physiology and pathology. The photoinhibition/repair cycle is a typical process in PSII which is mainly responsible for the survival of plants under the photoinihibition condition. It is therefore of significant importance to determine O2 .- production in this cycle, and then explore how O2 .- is controlled by PSII within a normal physiological level. With this in mind, we herein investigate the variation of the O2 .- levels in PSII under Mn-depleted and photoactivated conditions mimicking the photoinhibition/repair cycle in vitro. The effect of intrinsic SOD-like component on the O2 .- levels was also studied. Results show that PSII has the ability to regulate the O2 .- levels in these two processes by simultaneously modulating the O2 .- generation activity and intrinsic SOD-like activity. This finding could shed new lights on the photoprotective property of PSII against O2 .- and other reactive oxygen species. and Y. G. Song ... [et al.].
Tomato and pepper leaves were clipped with black leaf clips for dark adaptation under solar radiation in the late spring or early summer 2010 in southern Italy. The leaves showed highly variable maximum PSII quantum yield (Fv/Fm = 0.026-0.802) using a continuous-excitation fluorometer Pocket PEA. These results were confirmed using the modulated fluorometer FMS1 on tomato leaves in mid summer, with Fv/Fm as low as 0.222 ± 0.277 due to nearly equal minimum (F0) and maximum (Fm) fluorescence emission. A significant clip effect on Fv/Fm occurred after only 12 (tomato) or 25 (pepper) min. Increasing the leaf temperature from 25 to 50°C reportedly induced an F0 increase and Fm decrease so that Fv/Fm approached zero. The hypothesis that black leaf clips overheated under intense solar irradiance was verified by shrouding the clipped leaves with aluminum foil. In clipped leaves of pepper, Fv/Fm with the black clip/Pocket-PEA was 0.769 ± 0.025 (shrouded) and as low as 0.271 ± 0.163 (nonshrouded), the latter showing a double F0 and 32% lower Fm. An 8% clip effect on Fv/Fm was observed with the white clip/FMS1. To avoid the clip effect in high irradiance environments, Fv/Fm measurements with black clip/Pocket PEA system required leaf dark adaptation with
radiation-reflecting shrouds. It would be useful if manufacturing companies could develop better radiation-reflecting leaf clips for the Pocket PEA fluorometer. and P. Giorio.
The use of black leaf-clips for dark adaptation under high solar radiation conditions is reported to underestimate the maximum quantum yield of PSII photochemistry (Fv/Fm) measured by the continuous-excitation fluorometer Pocket PEA. The decrease in Fv/Fm was due to a rise in minimum fluorescence emission (F0), probably resulting from increased leaf temperature (Tl). In
field-grown tomato and pepper, fluorescence parameters and Tl in the region covered by the black leaf clip were measured in clipped leaves exposed to solar radiation during dark adaptation (clipped-only leaves) and in clipped leaves protected from solar radiation by aluminium foil (shrouded clipped leaves). Results confirmed significant Fv/Fm underestimates in clipped-only leaves primarily due to increased F0. In one tomato experiment, Tl increased from 30 to 44.5°C in clipped-only leaves, with a negligible rise in shrouded clipped leaves. In two respective pepper experiments, Tl in clipped-only leaves increased from 27 to 36.2°C and 33 to 40.9°C. Based on the results of this study, a clip-effect parameter (PCE) on fluorescence emission is proposed as the difference for Fv/Fm (or -F0/Fm) between shrouded clipped leaves and clipped-only leaves, which resulted to be 0.706 for tomato, and 0.241 and 0.358 for the two pepper experiments., P. Giorio ... [et al.]., and Obsahuje bibliografii
Seedling performance may determine plant distribution, especially in water-limited environments. Plants of Caragana korshinskii commonly grow in arid and semiarid areas in northwestern China, and endure water shortage in various ways, but little is known about their performance when water shortage occurs at early growth stages. The water relations, photosynthetic activity, chlorophyll (Chl) content and proline accumulation were determined in 1-year-old seedlings growing in a 1:1 mixture of Loess soil and Perlite and subjected to (1) a water deficit for 20 days and (2) kept adequately watered throughout. The water deficit induced low (-6.1 MPa) predawn leaf water potentials (LWP), but did not induce any leaf abscission. Stomatal conductance (gs), leaf transpiration rate (E), and net photosynthetic rate (PN) decreased immediately following the imposition of the water deficit, while the maximal photochemical efficiency of photosystem II (PSII) (Fv/Fm) and the effective quantum yield of PSII (ΦPSII) decreased 15 days later. An early and rapid decrease in gs, reduced E, increased Chl (a+b) loss, increased the apparent rate of photochemical transport of electrons through PSII (ETR)/PN, as well as a gradual increase in non-photochemical quenching of fluorescence (NPQ) and proline may have contributed to preventing ΦPSII from photodamage. C. korshinskii seedlings used a stress-tolerance strategy, with leaf maintenance providing a clear selective advantage, considering the occasional rainfall events during the growing season. and X. W. Fang ... [et al.].
The size, shape, and number of chloroplasts in the palisade and spongy parenchyma layers of Haberlea rhodopensis leaves changed significantly during desiccation and following rehydration. The chloroplasts became smaller and more rounded during desiccation, and aggregated in the middle of the cell. The size and number of chloroplasts in the palisade parenchyma cells were higher than in spongy parenchyma. The good correlation observed between the size or number of chloroplasts and the cross-sectional area of mesophyll cells, the cross-sectional width of the leaf and its water content suggested that the palisade cells were more responsive to water availability than the spongy cells. Changes in chloroplast number during desiccation and rehydration process are characteristic features for desiccation-tolerant plants (especially in homoiochlorophyllous strategy). and H. Nagy-Déri ... [et al.].
Photosynthesis, chlorophyll (Chl) a fluorescence, and nitrogen metabolism of hawthorn (Crataegus pinnatifida Bge.), subjected to exogenous L-glutamic acid (GLA) (200 mg l-1, 400 mg l-1, and 800 mg l-1) that possibly affect secondary metabolic regulation, were measured. The results indicated that photosynthetic and fluorescence characteristics of hawthorn exhibited positive responses to the application of GLA. Different concentrations of GLA caused an increase in Chl content, net photosynthetic rate
(PN) and stomatal conductance (g s) as well as transpiration rate (E), and improved the carboxylation efficiency (CE), apparent quantum yield (AQY) and maximum carboxylation velocity of Rubisco (Vcmax). Application of GLA could also enhance the maximum ratio of quantum yields of photochemical and concurrent non-photochemical processes in PSII (Fv/F0), the maximal quantum yield of PSII (Fv/Fm), the probability that an absorbed photon will move an electron into the electron transport chain beyond QA (ΦEo) as well as the performance index on absorption basis (PIABS), but decreased the intercellular CO2 concentration
(Ci) and the minimal fluorescence (F0). Application of GLA also induced an increase in nitrate reductase (NR; EC 1.6.6.1) and glutamine synthetase (GS; EC 6.3.1.2) activities, and increased the soluble protein content, leaf nitrogen (N) content and N accumulation in leaves as well as the plant biomass. However, the effects were different among different concentrations of GLA, and 800 mg l-1 GLA was better. This finding suggested that application of GLA is recommended to improve the photosynthetic capacity by increasing the light energy conversion and CO2 transfer as well as the photochemical efficiency of PSII, and enhanced the nitrogen metabolism and growth and development of plants. and C. YU ... [et al.].