The responses to irradiance of photosynthetic CO2 assimilation and photosystem 2 (PS2) electron transport were simultaneously studied by gas exchange and chlorophyll (Chl) fluorescence measurement in two-year-old apple tree leaves (Malus pumila Mill. cv. Tengmu No.1/Malus hupehensis Rehd). Net photosynthetic rate (PN) was saturated at photosynthetic photon flux density (PPFD) 600-1 100 (μmol m-2 s-1, while the PS2 non-cyclic electron transport (P-rate) showed a maximum at PPFD 800 μmol m-2 s-1. With PPFD increasing, either leaf potential photosynthetic CO2 assimilation activity (Fd/Fs) and PS2 maximal photochemical activity (Fv/Fm) decreased or the ratio of the inactive PS2 reaction centres (RC) [(Fi - Fo)/(Fm - Fo)] and the slow relaxing non-photochemical Chl fluorescence quenching (qs) increased from PPFD 1 200 μmol m-2 s-1, but cyclic electron transport around photosystem 1 (RFp), irradiance induced PS2 RC closure [(Fs - Fo')/Fm' - Fo')], and the fast and medium relaxing non-photochemical Chl fluorescence quenching (qf and qm) increased remarkably from PPFD 900 (μmol m-2 s-1. Hence leaf photosynthesis of young apple leaves saturated at PPFD 800 μmol m-2 s-1 and photoinhibition occurred above PPFD 900 μmol m-2 s-1. During the photoinhibition at different irradiances, young apple tree leaves could dissipate excess photons mainly by energy quenching and state transition mechanisms at PPFD 900-1 100 μmol m-2 s-1, but photosynthetic apparatus damage was unavoidable from PPFD 1 200 μmol m-2 s-1. We propose that Chl fluorescence parameter P-rate is superior to the gas exchange parameter PN and the Chl fluorescence parameter Fv/Fm as a definition of saturation irradiance and photoinhibition of plant leaves. and Husen Jia, Dequan Li.
Low temperature during the vegetative stage affects rice (Oryza sativa L.) seed-setting rate in Heilongjiang province at Northeast China. However, little is known about changes of the photosynthetic rate and physiological response in contrasting rice cultivars during chilling periods. In this study, two rice cultivars with different chilling tolerance were treated with 15°C from June 27 to July 7. The chilling-susceptive cultivar, Longjing11 (LJ11), showed a significant decrease in a ripening rate and seed-setting rate after being treated for four days, whilst chilling-tolerant cultivar, Kongyu131 (KY131), was only slightly affected after 4-d treatment. The photosynthetic activities, chlorophyll contents, and antioxidative enzyme activities in LJ11 decreased significantly along with the chilling treatment. The decrease in ß-carotene contents might play a role as it could cause direct photooxidation of chlorophylls and lead to the inhibition of the photosynthetic apparatus. In the meantime, no significant damage was found in leaves of KY131 from June 27 to July 11. In conclusion, the chilling-tolerance mechanism of rice is tightly related to the photosynthetic rate, metabolism of reactive oxygen species, and scavenging system in the vegetative stage., L.-Z. Wang, L.-M. Wang, H.-T. Xiang, Y. Luo, R. Li, Z.-J. Li, C.-Y. Wang, Y. Meng., and Obsahuje bibliografii
Two methods have been developed concurrently for hyperspectral measurements of plant canopy reflectance in two narrow wavelength bands centred around 531 and 570 nm. A laboratory-built two-channel radiometer provided an easy and quick estimation of the Photochemical Reflectance Index PRI = (R531 - R570)/(R570 + R531) of a plot of alfalfa. A CCD digital camera provided multispectral imaging and the analysis of this index on the same target. The two devices are complementary. The results of measurements are complementary with those of chlorophyll fluorescence induction. and M. Méthy, R. Joffre, S. Rambal.
10-5 M methyl jasmonate (JA-Me) treatment itself did not considerably change the 14CO2 fixation, parameters of room temperature chlorophyll fluorescence induction, proline content, and Na+ as well as Cl- accumulation. Salt stress (30 mM NaCl) lead to a decrease of both 14CO2 fixation and relative water content, and to an increase of proline content. Immediate nonvariable fluorescence (F0) also increased and the variable to maximal fluorescence ratio (Fv/Fm) decreased. Pretreatment with JA-Me for 3 d before salt treatment diminished the inhibitory effect of NaCl on the rate of 14CO2 fixation, protein content, and activity and content of ribulose-1,5-bisophosphate carboxylase/oxygenase. The Na+ and Cl- contents in leaves decreased in JA-Me pretreated plants. The JA-Me pretreatment prevented the increase of F0 level and restored the values of Fv/Fm. and M. Velitchkova, I. Fedina.
Abiotic stresses induce phosphoenolpyruvate carboxylase (PEPC) expression in C3 plants which suggests PEPC function in plant adaptation to stresses. Here, we studied the response of photosynthesis to short-term drought stress in rice seedlings overexpressing C4 PEPC from maize and millet. The transgenic lines exhibited 1.2-5.5 fold of PEPC activities than the wild type before the treatment, while 1.5-8.5 fold after five or ten days of water deficit. Net photosynthetic rate (P N) declined less during the water stress and recovered more after rewatering in the transgenic lines. These changes were accompanied with changes in the stomatal conductance (g s). The lower decrease in P N and g s resulted in significantly higher intrinsic water use efficiency in the transgenic rice lines after ten days of water withdrawal. There were no significant differences between the wild type and transgenic lines in maximum photochemical efficiency of PSII and photochemical quenching. The nonphotochemical quenching and the quantum efficiency of PSII maintained both higher in transgenic lines than those in the wild type during drought stress. This indicated that the transgenic lines could dissipate more excess energy to heat to protect PSII. Our result suggested that the increased PEPC activities in rice could alleviate the decrease of photosynthesis during short-term drought stress., Z. S. Ding, X. F. Sun, S. H. Huang, B. Y. Zhou, M. Zhao., and Obsahuje seznam literatury
WN6 (a stay-green wheat cultivar) and JM20 (control) were used to evaluate the effects of exogenous cytokinin on photosynthetic capacity and antioxidant enzymes activities in flag leaves. Results showed that WN6 reached the higher grain mass, which was mainly due to the higher photosynthetic rate resulting from the higher maximal quantum yield of PSII photochemistry (ΦPSII) and probability that a trapped exaction transfers an electron into the electron transport chain beyond QA (Ψo), and lower relative variable fluorescence intensity at the J-step (Vj). Exogenous 6-benzylaminopurine (6-BA) enhanced antioxidant enzymes activities and decreased malondialdehyde (MDA) content. Enhanced Ψo and electron transport rate (ETR), and decreased Vj contributed to improved photosynthetic rate in the 6-BA treatment. In addition, exogenous 6-BA significantly increased endogenous zeatin (Zt) content, which was significantly and positively correlated with the antioxidant enzyme activity and ΦPSII, implying that higher Zt content was responsible for the improved antioxidant status and photosynthetic performance., D. Q. Yang, Y. L. Luo, W. H. Dong, Y. P. Yin, Y. Li, Z. L. Wang., and Obsahuje bibliografii
Heat stress has become more common in recent years, limiting wheat production in Huang-Huai-Hai plain in China. To identify the effect of long-term heat stress on wheat production, two heat-resistant (JM44, JM23) and two heat-sensitive (XM26, GC8901) wheat varieties were sown in heat tents and normal conditions, and heat stress (9 to 12℃ higher than control) was imposed for seven days at post-anthesis. All varieties under heat stress exhibited early senescence and reduced grain-filling rate, while the grain-filling period of heat-tolerant varieties was longer than that of the heat-sensitive. Furthermore, long-term heat stress significantly reduced kernel mass, grain number, harvest index, chlorophyll content, maximum quantum yield of PSⅡ photochemistry, effective quantum yield of PSⅡ photochemistry, photosynthetic rate, and transpiration efficiency. In addition, the distribution of dry matter to vegetative organs, catalase activity, and malondialdehyde content increased. These results indicated that the lesser yield reduction of heat-resistant varieties (11-26%) than that of heat-sensitive (16-37%) is due to relatively higher antioxidative and photosynthetic performance and higher assimilation in the grain from vegetative organs.
Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration. and A. Calatayud ...[et al.].
The response of tomato (Solanum lycopersicum L.) to abiotic stress has been widely investigated. Recent physiological studies focus on the use of osmoprotectants to ameliorate stress damage, but experiments at a field level are scarce. Two tomato cultivars were used for an experiment with saline water (6.57 dS m-1) and subsurface drip irrigation (SDI) in a silty clay soil. Rio Grande is a salinity-tolerant cultivar, while Heinz-2274 is the salt-sensitive cultivar. Exogenous application of proline was done by foliar spray at two concentrations (10 and 20 mg L-1) during the flowering stage. Control plants were treated with saline water without proline. Proline at the lower concentration (10 mg L-1) increased dry mass of different plant organs (leaves, stems, and roots) and it improved various chlorophyll a fluorescence parameters compared with controls. Regarding mineral nutrition, K+ and P were higher in different organs, while low accumulation of Na+ occurred. However, Mg2+ was very high in all tissues of Rio Grande at the higher concentration of proline applied. Thus, the foliar spray of proline at 10 mg L-1 increased the tolerance of both cultivars. The growth of aboveground biomass of Heinz-2274 was enhanced by 63.5%, while Rio Grande improved only by 38.9%., B. Kahlaoui, M. Hachicha, S. Rejeb, M. N. Rejeb, B. Hanchi, E. Misle., and Obsahuje bibliografii
Morphology, biomass accumulation and allocation, gas exchange, and chlorophyll fluorescence were compared for one-year-old seedlings of Salix psammophila and Artemisia ordosica, two dominant desert species, in response to two water supplies (equivalent to 315.0 mm for present precipitation in growing season and to 157.5 mm for future decreasing precipitation) during 105 d. For both species, photochemical efficiency of photosystem 2 (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance, biomass accumulation in different organs, tree height, number of leaves, and leaf area were reduced in response to the decrease in water supply. For both species, instantaneous water use efficiency was not affected by the water deficit. However, diurnal patterns of gas exchange and biomass allocation were affected in different ways for the two species, with notably a decrease in specific leaf area and an increase in root : shoot ratio for S. psammophila only. Overall, S. psammophila was more responsive to the decreasing precipitation than A. ordosica. and C. W. Xiao ... [et al.].