To uncover adaptation capacities of two flooding-tolerant plant species, Pterocarya stenoptera (a native species) and Pinus elliottii (an exotic species from southeastern USA), to alternating submergence and drought, we investigated their physiological and growth responses to water stress. Water treatments, including control, continuous flooding (CF), and periodic flooding and drought (PF), were applied to seedlings in order to simulate water level fluctuation in the hydrofluctuation zone of the Three Gorges Reservoir Region. Results showed that net photosynthetic rate (P N), stomatal conductance, and intrinsic water-use efficiency of both plant species were negatively affected under CF and PF compared with the corresponding controls. The P N of both species under PF was comparable to that under CF. At the end of the experiment, the ratio of intercellular to ambient CO2 concentration was not statistically different between water treatments, while that of P. elliottii was significantly higher than that of P. stenoptera. Although P. stenoptera formed lenticels under flooding conditions, P. elliottii seedlings allocated more mass to leaves and increased the relative growth rate of height to enhance the photosynthetic efficiency. Our results illustrated that P. stenoptera and P. elliottii seedlings developed different adaptive strategies in response to flooding, both CF and PF. Therefore, both P. stenoptera and P. elliottii are promising candidates for the vegetation reconstruction of the riparian zones in the Three Gorges Reservoir Region., Y. Yang, C. Li., and Obsahuje seznam literatury
The microstructure of leaves and ultrastructure of chloroplasts were examined in tomato (Lycopersicon esculentum L.) plants treated with elevated temperature. Plants were exposed to 35°C for 30 d after florescence. The plants grown continuously under 25°C served as controls. Compared with the controls, the net photosynthetic rate (PN) in stressed plants decreased significantly. Stomatal conductance, intercellular CO2 concentrations, the rate of transpiration, and the limitation of stomatal conductance showed that the decrease in PN was caused mainly by nonstomatal restrictions. Meanwhile, stomata density increased significantly in the stressed plants. The stomata status of opening and closing became disorganized with a prolonged 35°C exposure. The damage of chloroplast membrane occurred earlier and was more serious in the plants under elevated temperature. At the same time, the thylakoids were loosely distributed with lesser grana, but the number of lipid droplets increased in chloroplasts. The number of starch grains in chloroplasts increased first and then decreased. In addition, the length of the main nerve in leaves increased and the main vein showed distortion in the plants stressed by 35°C. An increase was observed in the number of cells on the abaxial side of the main vein and these cells were overly congregated. The thickness of a vertical section became thinner in the stressed leaves. The cells of the upper epidermis thinned, and the ratio of palisade tissue to spongy tissue decreased. Generally, the photosynthetic apparatus of tomato changed significantly and the changed chloroplast ultrastructure might be one of the important reasons that caused the decrease of PN under 35°C., J. Zhang, X. D. Jiang, T. L. Li, X. J. Cao., and Obsahuje bibliografii
The aim of this study was to evaluate how the summer and winter conditions affect the photosynthesis and water relations of well-watered orange trees, considering the diurnal changes in leaf gas exchange, chlorophyll (Chl) fluorescence, and leaf water potential (Ψ) of potted-plants growing in a subtropical climate. The diurnal pattern of photosynthesis in young citrus trees was not significantly affected by the environmental changes when compared the summer and winter seasons. However, citrus plants showed higher photosynthetic performance in summer, when plants fixed 2.9 times more CO2 during the diurnal period than in the winter season. Curiously, the winter conditions were more favorable to photosynthesis of citrus plants, when considering the air temperature (< 29 °C), leaf-to-air vapor pressure difference (< 2.4 kPa) and photon flux density (maximum values near light saturation) during the diurnal period. Therefore, low night temperature was the main environmental element changing the photosynthetic performance and water relations of well-watered plants during winter. Lower whole-plant hydraulic conductance, lower shoot hydration and lower stomatal conductance were noticed during winter when compared to the summer season. In winter, higher ratio between the apparent electron transport rate and leaf CO2 assimilation was verified in afternoon, indicating reduction in electron use efficiency by photosynthesis. The high radiation loading in the summer season did not impair the citrus photochemistry, being photoprotective mechanisms active. Such mechanisms were related to increases in the heat dissipation of excessive light energy at the PSII level and to other metabolic processes consuming electrons, which impede the citrus photoinhibition under high light conditions. and R. V. Ribeiro ... [et al.].
Winter wheat (Triticum aestivum L. cv. Jingdong 8) was exposed to short-term high ozone treatment after anthesis and then was either well irrigated with soil water content (SWC) of 80-85 % (O3+W) or drought treated (SWC 35-40 %, O3+D). Short-term ozone exposure significantly decreased irradiance-saturated net photosynthetic rate (PN) of winter wheat. Under good SWC, PN of the O3-treated plant was similar to that of control on 2 d after O3-exposure (6 DAA), but decreased significantly after 13 DAA, indicating that O3 exposure accelerated leaf senescence. Meanwhile, green flag leaf area was reduced faster than that of control. As a result, grain yield of O3+W was significantly decreased. PN of O3+D was further notably decreased and green flag leaf area was reduced more than that in O3+W. Consequently, substantial yield loss of O3+D was observed compared to that of O3+W. Although PN was significantly positively correlated with stomatal conductance, it also had notable positive correlation with the maximum photochemical efficiency in the dark adapted leaves (Fv/Fm), electron transport rate (ETR), photochemical quenching (qP), as well as content of chlorophyll, suggesting that the depression of PN was mainly caused by non-stomatal limitation. Hence optimal soil water condition should be considered in order to reduce the yield loss caused by O3 pollution. and H. Xu ... [et al.].
Physiological responses from sensitive (S156) and resistant (R123) genotypes of ozone bioindicator, snap bean, were investigated after exposing the plants to cumulative, phytotoxic ozone amounts. Daily course of gas-exchange parameters showed delayed stomatal response in S156 leaves to environmental changes comparing to the response of R123 leaves. Potential photosynthetic quantum conversion, Stern-Volmer nonphotochemical quenching (NPQ), and maximum photochemical efficiency of PSII (Fv/Fm) values changed differently in the two genotypes between the first and last measuring days. We concluded that the higher ozone sensitivity originated at least partly from inferior regenerating and/or antioxidant capacity. Experimental protocol proved to be determinant on chlorophyll fluorescence parameters: Fv/Fm and NPQ declined at midday, and only the sensitive leaves showed a slight increase in NPQ between 12 h and 16 h. We explained these results by moderately high temperatures and shade-adapted state of our experimental plants under substantial ozone stress. On the base of temperature dependence of minimal fluorescence yield (F0), critical temperature proved to be higher than 32.7°C for Phaseolus vulgaris under these conditions. We found a strong linear correlation between NPQ and nonphotochemical quenching of F0, indicating that NPQ was determined mostly by energy-dependent quenching (qE). The qE is the light-harvesting complex located component of NPQ and depends on the amount of zeaxanthin molecules bound in PSII proteins. Thus, difference between daily courses of NPQ in the two genotypes was probably due to different ways of utilization of the zeaxanthin pool under the interactive effect of ozone and moderate heat stress., V. Villányi, Z. Ürmös, B. Turk, F. Batič, Z. Csintalan., and Obsahuje bibliografii
While photosynthesis of soybean has been enhanced by breeding, it remains to be clarified whether the improvement of root function could bring a further increase of photosynthetic capacity for the development of soybean cultivars. The objective of this grafting experiment was to determine the influence of record-yield soybean cultivars, Liaodou14 (L14) and Zhonghuang35 (Z35), as rootstocks on photosynthetic traits of cultivars released in different decades. Grafting of various soybean cultivars onto L14 or Z35 rootstocks showed a higher root physiological activity, which resulted in significant increases in some photosynthetic traits at the late grain-filling stage compared with the non-grafted and self-grafted plants. The genetic gain for some photosynthetic traits of cultivars released from 1966 to 2006 increased by using L14 and Z35 as rootstocks. It suggested that the photosynthetic traits of the recently released cultivars could increase more if their root functions are improved., S. Y. Li, F. Teng, D. M. Rao, H. J. Zhang, H. Y. Wang, X. D. Yao, C. M. Yu, C. H. Li, M. Z. Zhao, S. K. St. Martin, F. T. Xie., and Obsahuje seznam literatury
Monitoring some parameters would help to overcome the difficulties that can affect in vitro-grown plants during the crucial step of their acclimatization. Thus, after the determination of net photosynthesis and other parameters during acclimatization of in vitro-grown olive plantlets, we concluded that three months after the transfer to ex vitro, the in vitro-grown olive plants become well acclimated. In fact, even though the net photosynthesis, relatively high in vitro, recorded low values after 15 d from the transfer, it reverted back to its standard rates after 180 d of acclimatization. Transpiration and stomatal conductance first increased significantly with a maximum of 6.22 mmol(H2O) m-2 s-1 and 1.8 mmol(H2O) m-2 s-1, respectively, but they regressed to very low values after 180 d of acclimatization. Some changes in the leaf anatomy were also observed; the reduction of stomata density and inversely, the increase of trichome density, especially on the abaxial side of the leaves, were observed., A. Chaari-Rkhis, M. Maalej, A. Chelli-Chaabouni, L. Fki, N. Drira., and Obsahuje seznam literatury
Stressful environments such as salinity, drought, and high temperature (heat) cause alterations in a wide range of physiological, biochemical, and molecular processes in plants. Photosynthesis, the most fundamental and intricate physiological process in all green plants, is also severely affected in all its phases by such stresses. Since the mechanism of photosynthesis involves various components, including photosynthetic pigments and photosystems, the electron transport system, and CO2 reduction pathways, any damage at any level caused by a stress may reduce the overall photosynthetic capacity of a green plant. Details of the stress-induced damage and adverse effects on different types of pigments, photosystems, components of electron transport system, alterations in the activities of enzymes involved in the mechanism of photosynthesis, and changes in various gas exchange characteristics, particularly of agricultural plants, are considered in this review. In addition, we discussed also progress made during the last two decades in producing transgenic lines of different C3 crops with enhanced photosynthetic performance, which was reached by either the overexpression of C3 enzymes or transcription factors or the incorporation of genes encoding C4 enzymes into C3 plants. We also discussed critically a current, worldwide effort to identify signaling components, such as transcription factors and protein kinases, particularly mitogen-activated protein kinases (MAPKs) involved in stress adaptation in agricultural plants., M. Ashraf, P. J. C. Harris., and Obsahuje bibliografii
Glyphosate herbicide caused oxidative stress and exhibited negative effects on photosynthesis and gas exchange of peanut [Arachis hypogaea L. cv. Giza (G) 5 and 6] leaves. We demonstrated that glyphosate caused various morphological symptoms, such as chlorosis, yellowing, and appearance of curly edges in leaves treated with high doses of herbicide in both cultivars; however, the G5 cultivar was more sensitive and showed severer symptoms. Glyphosate lowered photosynthesis and reduced contents of pigments and proteins as well as free amino acids in both cultivars. The gas-exchange parameters, such as photosynthetic (P N) and transpiration rate (E), were highly altered by the glyphosate application. For example, P N and E were reduced by 65 and 61%, respectively, in G5 treated with high dose of glyphosate compared with control. Antioxidant enzymes, such as peroxidase, catalase, ascorbate peroxidase, and superoxide dismutase were induced by both low and high concentrations in the glyphosate-treated leaves. Moreover, the level of lipid peroxidation, indicated by a malondialdehyde content, as well as the hydrogen peroxide content increased in the glyphosate-treated leaves. However, an increase in total antioxidant activity was detected in leaves and this reflected changes in the antioxidant status and accumulation of antioxidants as a defense mechanism against glyphosate toxicity in peanut., D. E. M. Radwan , K. A. Fayez., and Obsahuje seznam literatury
A field experiment involving two planting densities (83,333 and 166,666 plants per ha), two cropping systems (monoculture and mixed culture) and five cowpea [Vigna unguiculata L. (Walp.)] genotypes was conducted at Nietvoorbij (33°54S, 18°14E), Stellenbosch, South Africa, to select cowpea material with superior growth and water-use efficiency (WUE). The results showed significantly higher photosynthetic rates, stomatal conductance and transpiration in leaves of plants at low density and in monoculture due to greater chlorophyll (Chl) levels relative to those at high density and in mixed culture. As a result, C concentration in leaves and the amount of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B accumulated in shoots at low density and under monoculture were also much higher. Even though no marked differences in photosynthetic rates were found between and among the five cowpea genotypes, leaf C concentration and shoot C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents differed considerably, with Sanzie exhibiting the highest C concentration and C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B contents in shoots, followed by Bensogla and Omondaw, while ITH98-46 and TVu1509 had the lowest shoot concentration and contents of C, P, K, Ca, Mg, Fe, Cu, Zn, Mn, and B. WUE (calculated as photosynthate produced per unit water molecule transpired) was significantly greater in plants at low density and monoculture relative to those at high density and in mixed culture. Isotopic analysis revealed significant differences in δ13C values of sorghum [Sorghum bicolor L. (Moench.)] and cowpea, with higher δ13C values being obtained for plants at low density and in monoculture relative to those at high density or in mixed culture. The five cowpea genotypes also showed significant differences in δ13C values, with Sanzie exhibiting the most negative value (i.e. low WUE) and ITH98-46, the least negative δ13C value (i.e. high WUE). Whether measured isotopically or from gas-exchange studies, sorghum (a C4 species) exhibited much higher WUE relative to cowpea (a C3 species). Both correlation and regression analyses revealed a positive relationship between WUE from gas-exchange studies and δ13C values from isotopic analysis of cowpea and sorghum shoots. and J. H. J. R. Makoi, S. B. M. Chimphango, F. D. Dakora