One-year old sweet almond (Prunus dulcis) seedlings were submitted to four levels of salt stress induced by NaCl, namely 0.3, 0.5, 0.7, and 1.0 S m-1. Effects of salt stress on a range of chlorophyll (Chl) fluorescence parameters (Chl FPs) and Chl contents were investigated in order to establish an eco-physiological characterization of P. dulcis to salinity. Salt stress promoted an increase in F0, Fs, and F0/Fm and a decrease in Fm, F'm, Fv/Fm, qP, ΔF/F'm, Fv/F0, and UQF(rel), in almost all Chl fluorescence yields (FY) and FPs due to its adverse effect on activity of photosystem 2. No significant changes were observed for quenchings qN, NPQ, and qN(rel). The contents of Chl a and b and their ratio were also significantly reduced at increased salt stress. In general, adverse salinity effects became significant when the electric conductivity of the nutrient solution (ECn) exceeded 0.3 S m-1. The most sensitive salt stress indicators were Fv/F0 and Chl a content, and they are thus best used for early salt detection in P. dulcis. Monitoring of a simple Chl FY, such as F0, also gave a good indication of induced salt stress due to the significant correlations observed between the different Chl FYs and FPs. Even essential Chl FYs, like F0, Fm, F'm, and Fs, and mutually independent Chl FPs, like Fv/F0 and qP, were strongly correlated with each other. and A. Ranjbarfordoei, R. Samson, P. Van Damme.
The objective of this study was to use nondestructive measurements as the precise irrigation indices for potted star cluster (Pentas lanceolata). Drought stress was imposed on plants for 0, 3, 5, 7, 12, and 16 d by withholding water. Measurements were conducted on the third leaf counted from the apex (upper leaves) and on the third leaf from the bottom (lower leaves). Within the range of soil water content (SWC) from 10 to 45%, leaf water potential (WP), SWC, and soil matric potential (SMP), chlorophyll fluorescence, photochemical reflectance index (PRI), adjusted normalized difference vegetation index (aNDVI), and the reflectance (R) at 1950 nm (R1950) were measured. The plants reached the temporary wilting point at -3.87 MPa of leaf WP; the maximal fluorescence yield of the light-adapted state (Fm′) ratio of upper-to-lower leaves was 1.7. When the Fm′ ratio was 1.3, it corresponded to lower-leaf WP < -2.27 MPa, SWC < 21%, SMP < -20 kPa, PRI < 0.0443, aNDVI < 0.0301, and R1950 > 8.904; it was the time to irrigate. In conclusion, the Fm′ ratio of upper-to-lower leaves was shown to be a nondestructive predictor of leaf WP and can be used to estimate irrigation timing., C. W. Wu, M. C. Lee, Y. L. Peng, T. Y. Chou, K. H. Lin, Y. S. Chang., and Obsahuje seznam literatury
We examined effects of late-season heat stress (L-SHS) on chlorophyll (Chl) fluorescence parameters and yield of bread wheat as well as roles of phosphate bio-fertilizer (PB-F) and Zn and B to compensate for the likely effects of heat stress. Factors were planting date (21 November and 5 January to coincide with grain filling to L-SHS) as the main factor, no inoculation (control) and inoculation of the seeds with PB-F as the sub-factor, and foliar application of water (control), Zn, B, and Zn + B as 3 L ha-1 as
sub-sub factor. Results revealed that L-SHS reduced maximal quantum yield of PSII photochemistry, effective quantum yield of PSII photochemistry, efficiency of PSII in the light-adapted state, and the grain yield. Moreover, L-SHS increased the nonphotochemical quenching. The PB-F mitigated the effects of L-SHS on Chl fluorescence, yield, and yield components. Among nutrients, the combined Zn + B was more effective in reducing the effects of L-SHS than that of Zn and B alone. Nevertheless, there was an interaction between foliar nutrients application and PB-F, suggesting that Zn application alone had a profound influence on improving Chl fluorescence parameters and increased yield in combination with PB-F., H. R. Eisvand, H. Kamaei, F. Nazarian., and Obsahuje bibliografii
Our research aimed to study the correlation between the SPAD-502 readings and the color space CIE L*a*b* values in two cultivars of Alstroemeria sp. during leaf senescence and to evaluate the statistical criteria used in the selection of the best fit calibration functions. We demonstrate the importance of the Akaike information criterion and the parsimonious function besides the coefficient of determination. The reliability of the functions was tested by Student's t-test comparison between the chlorophyll (Chl) estimated from SPAD readings and their chemical concentrations. Polynomial and Hoerl function described well the changes in Chl a and total Chl (a+b) during senescence, but calibration functions are required to perform for each cultivar. We demonstrated that CIE L*a*b* system is reliable to estimate SPAD reading at stages of leaf senescence of Alstroemeria sp. and can be used instead of SPAD-502.
A field experiment was conducted with two cassava cultivars and eight levels of nitrogen to examine the relationship between extractable chlorophyll (Chl) content of cassava leaves and both the Chl meter value (SPAD) and leaf colour chart (LCC) score. The SPAD, LCC, and Chl a+b content were influenced by leaf position, growth stage, cultivar (cv.), and N fertilization. The cvs. and N fertilization had significant effect on SPAD, LCC, and Chl a+b content of youngest fully expanded leaf (leaf 1) blade in most cases. An F-test indicated that common equations pooled across cvs., N fertilization, and growth stages could be used to describe the relationships between Chl a+b content and LCC and between SPAD and LCC, but not between SPAD and Chl a+b content. Relationships between tuber yield and SPAD, LCC, and Chl a+b content were significant (p<0.05) and positive at 30 and 60 d after planting. Thus LCC and SPAD can be used to estimate leaf Chl content which is an indicator of leaf N status. and M. Haripriya Anand, G. Byju.
Photosynthetic pigment contents of the second sexual generation of a cybrid plant (C-18-1) resulting from Solanum nigrum genome and Solanum tuberosum plastome were compared to those of the original (S. nigrum). Chloroplast ultrastructure alterations among S. tuberosum, cybrid, and S. nigrum were also studied. Leaf segments of both the cybrid and S. nigrum plants were cultured on shoot induction medium [B5 supplemented with 0.56 g m-3 benzylaminopurine (BAP)] for one week in light, to induce adventitious bud formation. These leaf segments were then placed in darkness for 5 weeks to form a white shoot. The respective cybrid plant had the same phenotype of the fusion recipient plant (S. nigrum) and was fertile. The rate of photosynthetic pigment biosynthesis in the white cybrid shoots was lower than that of the original plant shoots after subjecting the two plants to the same conditions of different irradiation periods (0, 2, 4, 6, 8, and 10 d). At the 10-d irradiation period of two white shoot plants, the total pigment content of S. nigrum shoot increased approximately 3-fold over that of the cybrid shoot. Numbers of grana and thylakoids as well as chloroplast size were decreased in cybrid cells in comparison to those in S. tuberosum cells. Under atrazine stress, while the chloroplast ultrastructure of the cybrid cells (atrazine sensitive) was strongly influenced, the chloroplasts of S. nigrum (atrazine resistant) were not affected. and K. A. Fayez, A. M. Hassanein.
Chlorophyll (Chl) α fluorescence induction (transient), measured by exposing dark-adapted samples to high light, shows a polyphasic rise, which has been the subject of extensive research over several decades. Several Chl fluorescence parameters based on this transient have been defined, the most widely used being the FV [= (FM-F0)]/FM ratio as a proxy for the maximum quantum yield of PSII photochemistry. However, considerable additional information may be derived from analysis of the shape of the fluorescence transient. In fact, several performance indices (PIs) have been defined, which are suggested to provide information on the structure and function of PSII, as well as on the efficiencies of specific electron transport reactions in the thylakoid membrane. Further, these PIs have been proposed to quantify plant tolerance to stress, such as by high light, drought, high (or low) temperature, or N-deficiency. This is an interesting idea, since the speed of the Chl α fluorescence transient measurement (<1 s) is very suitable for high-throughput phenotyping. In this review, we describe how PIs have been used in the assessment of photosynthetic tolerance to various abiotic stress factors. We synthesize these findings and draw conclusions on the suitability of several PIs in assessing stress responses. Finally, we highlight an alternative method to extract information from fluorescence transients, the Integrated Biomarker Response. This method has been developed to define multi-parametric indices in other scientific fields (e.g., ecology), and may be used to combine Chl α fluorescence data with other proxies characterizing CO2 assimilation, or even growth or grain yield, allowing a more holistic assessment of plant performance., A. Stirbet, D. Lazár, J. Kromdijk, Govindjee., and Obsahuje bibliografické odkazy
Plants of the discovered chlorophyll-deficient mutant of oak (ML) display enhanced disease resistance to the fungus Erysiphe cichoracearum, causal agent of powdery mildew. Quantitative imaging of chlorophyll (Chl) fluorescence revealed that the net photosynthetic rate (PN) declined progressively in both untreated and invaded ML leaves as well as in inoculated wild-type (WT) leaves. Images of non-photochemical fluorescence quenching (NPQ) in both untreated and infected mutant leaves suggested that the capacity of Calvin cycle had been reduced and that there was a complex metabolic heterogeneity within the ML leaf. The ML mutant accumulates reactive oxygen species, ROS (H2O2) from the oxidative burst followed by spontaneous cell death that mimic the hypersensitive response. Reduction in pathogen sporulation on ML leaves correlated with the accumulation of soluble saccharides and a more rapid induction of defence responses including expression of some defence proteins (β-1,3-glucanase and chitinase). Unlike to WT plants, ML- conferred phenotype activates and/or de-represses multiple defence responses, making them more easily induced by pathogens.
Chlorophyllase (Chlase) actívity measured as the in vitro degradation of chlorophyll (Chl) was variably enhanced by various heavy metals (Cd2+, Pb2+, Mn2+, Co^"*", Ni2+ and their mixture). The en2yme actívity on Chl a was higher than that on Chl b. Chlase isolated from Chlorella fusca oř Kirchneriella lunaris responded differently to the heavy metals. The inclusion of Ca2+ in the assay media affected the enzyme actívity. While some concentrations were stimulatory, others were inhibitory depending on partícular heavy metal, the algal species, and the Chl a oř b.
Chlorophyliase (Chlase) is widely distributed in higher and lower plants and differs in activity. It occurs in various organs. In some plants the enzyme is synthesized in cytoplasm, in others in chloroplasts. Various Chlase forms are known. Participation, in the chlorophyll (Chl) degrading systém belongs to the main fimctions of Chlase. Moreover, it may catalyse Chl biosynthesis and takés part in photosynthesis. The Chlase activity is stimulated by radiant energy, sublethal freezing, heavy metals (Hg, Zn, Cu), Fe and Mn deficiency, and mosaic virus infection. The effect of water content on Chlase activity depends on individual plant organs. Osmotic and saline- osmotic stress decreases Chlase activity, but NaCl can stimulate the activity. The influence of plant age depends on plant genus. Some growth regulators (ethylene, heteroauxin, abscisic acid) increase Chlase activity, others (kinetin, dicarboxylic monoesters, gibberellic acid, gibbérellin A3) inhibit it. The mechanisms of Chlase action are also reviewed.