Competition plays an important role in the replacement of native species by alien plants. A greenhouse experiment was conducted to investigate whether the competition pattern of alien Robinia pseudoacacia L. and native Quercus acutissima Carr. is affected by soil sterilization. Physiological traits, such as gas-exchange parameters and chlorophyll (Chl) content, and growth traits, such as the biomass accumulation of the two species, were examined in natural soil or in soil sterilized with benomyl. The results show that native Q. acutissima inhibits the growth of R. pseudoacacia in natural soil. When the two plants coexisted and competed under sterilization treatment, R. pseudoacacia was less inhibited by Q. acutissima and the competition of R. pseudoacacia decreased the growth of Q. acutissima in terms of biomass, Chl a, Chl b, total Chl, and Chl a/b. These results suggest that soil sterilization benefits the growth of R. pseudoacacia and changes the competition pattern by the changed soil biota. Soil sterilization increased the biomass of root nodules, which ultimately benefits the growth of R. pseudoacacia and root nodule bacteria may be important in the dispersal and invasion process of nitrogen-fixing alien plants such as R. pseudoacacia., H. Chen ... [et al.]., and Obsahuje bibliografii
Interspecific competition between fat hen (Chenopodium album L.) and sunflower (Helianthus annuus L. NSH-33 hybrid) in pure and mixed stands of identical plant density (35 x 35 cm spacing) was studied in smáli plot field experiments under drought stress. Decrease in net photosynthetic rate (E^) due to interspecific competition was not statistically significant in either species in the first part of the growing season. During drought stress, however, significantly decreased in sunflower, while it hardly changed in C. album in the same (interspecific) competition situation. In pure stands, transpiration rate (E) was lower in C. album than in sunflower and this difference was more pronoímced in mixed stands. Consequently, C. album showed a very high water use efficiency (WUE) especially in the shade layer, which accounts for a larger part of the canopy in this species. By contrast, WUE in sunflower decreased, especially in the sun layer of the mixed stand. Interspecific competition reduced the total biomass more severely in sunflower than in C. album by the end of the growing season. The reduction was especially remarkable in the biomass of the reproductive organs. Reproductive effort expressed as reproductive allocation was higher in C. album than in sunflower. Hence the reproductive effort in sunflower and C. album in both intra- and interspecific competition seemed to be correlated with WUE, which is a prime characteristic of drought stress tolerance.
Using a radiogasometric method the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates in the leaves of two groups of C3 species, differing in the ability of starch accumulation, were determined. One group included starch-accumulating (SA) species with rates of starch synthesis on the average 38 % the rate of photosynthesis [Solanum tuberosum L., Arabidopsis thaliana (L.) Heynh, Helianthus annuus L., and Plantago lanceolata L.]. The second group represented starch-deficient (SD) species with rates of starch synthesis less than 8 % the rate of photosynthesis (Secale cereale L., Triticum aestivum L., Hordeum vulgare L., and Poa trivialis L.). In SA species the rate of respiration in the dark was significantly higher than in SD species. No differences were found in the rates of photosynthesis, photorespiration, and respiration under irradiation. Thus, the degree of inhibition of respiration by irradiation was in SA species higher than in SD species. It is concluded that starch does not provide substrates for respiratory and photorespiratory decarboxylations in irradiated photosynthesizing leaves. and H. Ivanova ... [et al.].
As compared with the swamp reed (SR) ecotype of Phragmites communis growing in the desert region of northwest China, plants of the dune reed (DR) ecotype from the same region possessed lower chlorophyll (Chl) content in leaves, and less thylakoids and grana stacks in chloroplasts. Tube gel electrophoresis without stain showed that the contents of Chl-protein (Pro) components related to photosystem 2 (PS2) were markedly lower in the DR thylakoid membranes than in the SR thylakoid membranes, while the contents of Chl-Pro components associated with PS1 were almost the same in both types. SDS-PAGE analysis indicated that the content of polypeptides of the light-harvesting Chl a/b complex of PS2 (LHC2) was lower in the DR thylakoids. Besides, the conformation of LHC2 within the DR thylakoid membranes was also altered as indicated by circular dichroism spectra. Hence in the DR, reduced energy harvesting by declining the size of LHC2 might be responsible for the down-regulated PS2 activity. Chl fluorescence parameters. Fv/Fm and quantum efficiency of PS2 (ΦPS2), were lower in the DR leaves than in the SR ones. However, non-photochemical quenching coefficient (qN) was greater in DR than that in SR, implying other energy dissipation way exists in the DR photosynthetic membranes. and X. Y. Zhu, S. M. Wang, C. L. Zhang.
Automatic segmentation, tokenization and morphological and syntactic annotations of raw texts in 45 languages, generated by UDPipe (http://ufal.mff.cuni.cz/udpipe), together with word embeddings of dimension 100 computed from lowercased texts by word2vec (https://code.google.com/archive/p/word2vec/).
For each language, automatic annotations in CoNLL-U format are provided in a separate archive. The word embeddings for all languages are distributed in one archive.
Note that the CC BY-SA-NC 4.0 license applies to the automatically generated annotations and word embeddings, not to the underlying data, which may have different license and impose additional restrictions.
Update 2018-09-03
===============
Added data in the 4 “surprise languages” from the 2017 ST: Buryat, Kurmanji, North Sami and Upper Sorbian. This has been promised before, during CoNLL-ST 2018 we gave the participants a link to this record saying the data was here. It wasn't, sorry. But now it is.
Baseline UDPipe models for CoNLL 2017 Shared Task in UD Parsing, and supplementary material.
The models require UDPipe version at least 1.1 and are evaluated using the official evaluation script.
The models are trained on a slightly different split of the official UD 2.0 CoNLL 2017 training data, so called baselinemodel split, in order to allow comparison of models even during the shared task. This baselinemodel split of UD 2.0 CoNLL 2017 training data is available for download.
Furthermore, we also provide UD 2.0 CoNLL 2017 training data with automatically predicted morphology. We utilize the baseline models on development data and perform 10-fold jack-knifing (each fold is predicted with a model trained on the rest of the folds) on the training data.
Finally, we supply all required data and hyperparameter values needed to replicate the baseline models.