Baseline UDPipe models for CoNLL 2017 Shared Task in UD Parsing, and supplementary material.
The models require UDPipe version at least 1.1 and are evaluated using the official evaluation script.
The models are trained on a slightly different split of the official UD 2.0 CoNLL 2017 training data, so called baselinemodel split, in order to allow comparison of models even during the shared task. This baselinemodel split of UD 2.0 CoNLL 2017 training data is available for download.
Furthermore, we also provide UD 2.0 CoNLL 2017 training data with automatically predicted morphology. We utilize the baseline models on development data and perform 10-fold jack-knifing (each fold is predicted with a model trained on the rest of the folds) on the training data.
Finally, we supply all required data and hyperparameter values needed to replicate the baseline models.
Baseline UDPipe models for CoNLL 2018 Shared Task in UD Parsing, and supplementary material.
The models require UDPipe version at least 1.2 and are evaluated using the official evaluation script. The models were trained using a custom data split for treebanks where no development data is provided. Also, we trained an additional "Mixed" model, which uses 200 sentences from every training data. All information needed to replicate the model training (hyperparameters, modified train-dev split, and pre-computed word embeddings for the parser) are included in the archive.
Additionaly, we provide UD 2.2 CoNLL 2018 training data with automatically predicted morphology. We utilize the baseline models on development data and perform 10-fold jack-knifing (each fold is predicted with a model trained on the rest of the folds) on the training data.
Software for corpus linguists and text/data mining enthusiasts. The CorpusExplorer combines over 45 interactive visualizations under a user-friendly interface. Routine tasks such as text acquisition, cleaning or tagging are completely automated. The simple interface supports the use in university teaching and leads users/students to fast and substantial results. The CorpusExplorer is open for many standards (XML, CSV, JSON, R, etc.) and also offers its own software development kit (SDK).
Source code available at https://github.com/notesjor/corpusexplorer2.0
Tokenizer, POS Tagger, Lemmatizer, and Parser model based on the PDT-C 1.0 treebank (https://hdl.handle.net/11234/1-3185). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#czech_pdtc1.0_model . To use these models, you need UDPipe version 2.1, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
POS Tagger and Lemmatizer models for EvaLatin2020 data (https://github.com/CIRCSE/LT4HALA). The model documentation including performance can be found at https://ufal.mff.cuni.cz/udpipe/2/models#evalatin20_models .
To use these models, you need UDPipe version at least 2.0, which you can download from https://ufal.mff.cuni.cz/udpipe/2 .
ILSP FBT Tagger is an adaptation of the Brill tagger trained on Greek text. It uses a PAROLE compatible tagset of 584 different tags which capture the morphosyntactic particularities of the Greek language. Working on the output of a sentence detection and tokenisation tool, the tagger assigns initial tags, looking up in a lexicon created from a manually annotated corpus during training. A suffix lexicon is used for initially tagging unknown words. 799 contextual rules are then applied to improve the initial phase output.
UDPipe is an trainable pipeline for tokenization, tagging, lemmatization and dependency parsing of CoNLL-U files. UDPipe is language-agnostic and can be trained given only annotated data in CoNLL-U format. Trained models are provided for nearly all UD treebanks. UDPipe is available as a binary, as a library for C++, Python, Perl, Java, C#, and as a web service.
UDPipe is a free software under Mozilla Public License 2.0 (http://www.mozilla.org/MPL/2.0/) and the linguistic models are free for non-commercial use and distributed under CC BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/) license, although for some models the original data used to create the model may impose additional licensing conditions. UDPipe is versioned using Semantic Versioning (http://semver.org/).
UDPipe website http://ufal.mff.cuni.cz/udpipe contains download links of both the released packages and trained models, hosts documentation and offers online demo.
UDPipe development repository http://github.com/ufal/udpipe is hosted on GitHub.
UDPipe 2 is a POS tagger, lemmatizer and dependency parser.
Compared to UDPipe 1:
- UDPipe 2 is Python-only and tested only in Linux,
- UDPipe 2 is meant as a research tool, not as a user-friendly UDPipe 1 replacement,
- UDPipe 2 achieves much better performance, but requires a GPU for reasonable performance,
- UDPipe 2 does not perform tokenization by itself – it uses UDPipe 1 for that.
UDPipe 2 is available in the udpipe-2 branch of the UDPipe repository at https://github.com/ufal/udpipe/tree/udpipe-2. It is a free software under Mozilla Public License 2.0 (http://www.mozilla.org/MPL/2.0/) and the models are free for non-commercial use and distributed under CC BY-NC-SA (http://creativecommons.org/licenses/by-nc-sa/4.0/) license, although for some models the original data used to create the model may impose additional licensing conditions.
UDPipe 2 is also available as a REST service running at https://lindat.mff.cuni.cz/services/udpipe. If you like, you can use the https://github.com/ufal/udpipe/blob/udpipe-2/udpipe2_client.py script to interact with it.
Tokenizer, POS Tagger, Lemmatizer and Parser models for all Universal Depenencies 1.2 Treebanks, created solely using UD 1.2 data (http://hdl.handle.net/11234/1-1548).
To use these models, you need UDPipe binary, which you can download from http://ufal.mff.cuni.cz/udpipe.