Recent reports have indicated a considerably inactivated PSII in twig cortices, in spite of the low light transmittance of overlying periderms. Corresponding information for more deeply located and less illuminated tissues like xylem rays and pith are lacking. In this investigation we aimed to characterize the efficiency of PSII and its light sensitivity along twig depth, in conjunction with the prevailing light quantity and quality. To that aim, optical methods (spectral reflectance and transmittance, chlorophyll fluorescence imaging, low temperature fluorescence spectra) and photoinhibitory treatments were applied in cut twig sections of four tree species, while corresponding leaves served as controls. Compared to leaves, twig tissues displayed lower chlorophyll (Chl) levels and dark-adapted PSII efficiency, with strong decreasing gradients towards the twig center. The low PSII efficiencies in the inner stem were not an artifact due to an actinic effect of measuring beam or to an enhanced contribution of PSI fluorescence. In fact, the PSII/PSI ratios in cortices were higher and those in the xylem rays similar to that of leaves. Inner twig tissues were quite resistant to photoinhibitory treatments, tolerating irradiation levels several-fold higher than those encountered in their microenvironment. Moreover, the extent of high light tolerance was similar in naturally exposed and shaded twig sides. The results indicate an increasing, inherent and light-independent inactivation of PSII along twig depth. The findings are discussed on the basis of a recently proposed model for photosynthetic electron flow in twigs, taking into account the specific atmospheric and light microenvironment as well as the possible metabolic needs of such bulky organs. and C. Yiotis, Y. Petropoulou, Y. Manetas.
Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding β- and α -subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different. and S. Qin, F. Q. Zhao, C. K. Tseng.
Increasing the efficiency of photosynthesis in sugarcane canopies is the key for improving crop yield. Herein, we evaluated the photosynthetic performance along the canopy of ten sugarcane cultivars and three Saccharum species. Canopy morphological traits were evaluated, and leaf gas exchange was measured in the first (sun-exposed, +1) and the fourth (shaded, +4) fully expanded leaves and under low- and high-light conditions. Similar photosynthetic capacity was found in leaves +1 and +4 under high light in genotypes with a high leaf area index and a high fraction of the sky blocked by the foliage (> 85%). Interestingly, such canopy characteristics cause low light availability to leaves +4, suggesting the photosynthetic acclimation of these leaves to self-shading in some genotypes. We highlight IACCTC06-8126 and CTC4 as those genotypes with higher canopy photosynthetic capacity, presenting high leaf area, high photosynthetic rates in sun-exposed leaves, and high responsiveness of shaded leaves to increasing light availability.
Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (PN) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, PN, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period., H. H. Luo, H. L. Zhang, Y. L. Zhang, W. F. Zhang., and Obsahuje bibliografii
In the phylogenetic history of photosynthesis the C4 photosynthetic pathway is a rather latě, a nearly recent event. With the background of globál CO2 starvation and given the evolutionary competence, different ecological constraints as water and/or nitrogen deficiency oř salinity could be the driving forces in distinct habitats for selection of genotypes with a CO2 pump. Whether C3-like C3-C4 intermediate species BLS Moricandia arvensis with a less efficient CO2 pump are on the way to C4 photosynthesis remains an open question. Selection for a somewhat improved CO2 concentration mechanism under strong selective pressure seems to be a possible experimental approach to imitate evolutionary steps in adaptation to CO2 starvation.
Diurnal and seasonal fluctuations in water potential (Ψ), stomatal conductance (gs), transpiration rate (E), and net photosynthetic rate (PN) were monitored in Capparis spinosa L., a Mediterranean plant growing during summer, i.e. at the period considered the most stressful for local plant life. In spite of the complete absence of rain, Ψ exhibited a modest drop at midday (-2.7 MPa), but was fully recovered overnight, indicating sufficient access to water sources. The stomata remained open throughout the day and season and the high E resulted in leaf temperatures up to 3.9 °C below air temperature. Additionally, PN of the fully exposed leaves was higher than 25 μmol m-2 s-1 for more than 10 h per day throughout the summer growth period. No symptoms of photooxidative stress were shown, as judged by maximum photosystem 2 photochemical efficiency (Fv/Fm) and the function of xanthophyll cycle. Indeed, diurnal inter-conversions of the xanthophyll cycle components were modest during the summer and a more intensive function of the cycle was only evident during leaf senescence in autumn. In comparison with a semi-deciduous and an evergreen sclerophyll co-existing in the same ecosystem, C. spinosa assimilated up to 3.4 times more CO2 per m2 during its growth period (May to October) and up to 1.8 times more on an annual basis. and E. Levizou, P. Drilias, A. Kyparissis.
Photosynthetic parameters, growth, and pigment contents were determined during expansion of the fourth leaf of in vitro photoautotrophically cultured Nicotiana tabacum L. plants at three irradiances [photosynthetically active radiation (400-700 nm): low, LI 60 µmol m-2 s-1; middle, MI 180 µmol m-2 s-1; and high, HI 270 µmol m-2 s-1]. During leaf expansion, several symptoms usually accompanying leaf senescence appeared very early in HI and then in MI plants. Symptoms of senescence in developing leaves were: decreasing chlorophyll (Chl) a+b content and Chl a/b ratio, decreasing both maximum (FV/FM) and actual (ΦPS2) photochemical efficiency of photosystem 2, and increasing non-photochemical quenching. Nevertheless, net photosynthetic oxygen evolution rate (PN) did not decrease consistently with decrease in Chl content, but exhibited a typical ontogenetic course with gradual increase. PN reached its maximum before full leaf expansion and then tended to decline. Thus excess irradiance during in vitro cultivation did not cause early start of leaf senescence, but impaired photosynthetic performance and Chl content in leaves and changed their typical ontogenetic course. and B. Radochová, I. Tichá.
The polarized absorption, photoacoustic, fluorescence emission, and fluorescence excitation spectra of whole cells of cyanobacteria Synechocystis sp. embedded in a polymer film were measured. The bacteria cells, as it follows from anisotropy of absorption and fluorescence spectra, were even in a non-stretched polyvinyl alcohol film oriented to a certain extent. The measurements were done for such film in order to avoid the deformation of cyanobacteria shapes. Part of the samples was bleached by irradiation with strong polarized radiation with electric vector parallel to the orientation axis of cells. The anisotropy of photoacoustic spectra was higher than that of absorption spectra and it was stronger changed by the irradiation. Polarized fluorescence was excited in four wavelength regions characterised by different contribution to absorption from various bacteria pigments. The shapes of emission spectra were different depending on wavelength of excitation, polarization of radiation, and previous irradiation of the sample. The fluorescence spectra were analysed on Gaussian components belonging to various forms of pigments from photosystems (PS) 1 and 2. The results inform about excitation energy transfer between pools of pigments, differently oriented in the cells. Energy of photons absorbed by phycobilisomes was transferred predominantly to the chlorophyll of PS2, whereas photons absorbed by carotenoids to chlorophylls of PS1. and J. Goc ... [et al.].
We present a chlorophyll fluorometer module system which adapts the intensity to the individual leaf sample by adjusting the quantum flux density of the excitation light so that the fluorescence signal is kept constant. This is achieved by means of a feedback power adjustment of the fluorescence exciting laser diode. Thus, the intensity of the excitation light is adapted to the actual need of a particular sample for quantum conversion without applying exaggeratedly high quantum flux density. We demonstrate the influence of the initial laser power chosen at the onset of irradiation and kept constant during fluorescence rise transient within the first second. Examples are shown for measuring upper and lower leaf sides, a single leaf with different pre-darkening periods, as well as yellow, light green and dark green leaves. The novel excitation kinetics during the induction of chlorophyll fluorescence can be used to study the yield and regulation of photosynthesis and its related non-photochemical processes for an individual leaf. It allows not only to sense the present state of pre-darkening or pre-irradiation but also the light environment the leaf has experienced during its growth and development. Thus, the individual physiological capacity and plasticity of each leaf sample can be sensed being of high importance for basic and applied ecophysiological research which makes this new methodology both innovative and informative. and A. Barócsi ... [et al.].
Excitation kinetics based on feedback regulation of chlorophyll (Chl) fluorescence of leaves measured with the chlorophyll fluorometer, FluoroMeter Modul (FMM), are presented. These kinetics showed the variation of excitation light (laser power, LP) regulated by the feedback mechanism of the FMM, an intelligent Chl fluorometer with embedded computer, which maintains the fluorescence response constant during the 300-s transient between the dark- and light-adapted state of photosynthesis. The excitation kinetics exhibited a rise of LP with different time constants and fluctuations leading to a type of steady state. The variation of excitation kinetics were demonstrated using the example of primary leaves of etiolated barley seedlings (Hordeum vulgare L. cv. Barke) during 48 h of greening in the light with gradual accumulation of Chl and development of photosynthetic activity. The excitation kinetics showed a fast rise followed by a short plateau at ca. 30 s and finally a slow constant increase up to 300 s. Only in the case of 2 h of greening in the light, the curve reached a stable steady state after 75 s followed by a slight decline. The final LP value (at 300 s of illumination) increased up to 12 h of greening and decreased with longer greening times. The active feedback mechanism of the FMM adjusted the excitation light during the measurement to the actual photosynthetic capacity of the individual leaf sample. In this way, the illumination with excessive light was avoided. The novel excitation kinetics can be used to characterize health, stress, disease, and/or product quality of plant material., C. Buschmann ... [et al.]., and Obsahuje bibliografii