To probe the role of xanthophylls in non-photochemical quenching (NPQ) and the compensatory acclimated photoprotection mechanisms, a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) Xa mutant with deficit in lutein (L) and neoxanthin (N) contents was used. The Xa mutant showed lowered NPQ, an increased degree of de-epoxidation state [(A+Z)/(V+A+Z)], and decreases of photosystem 2 (PS2) antenna size. Although the Xa mutant had a CO2 assimilation rate similar to that of Ailsa Craig, it exhibited a much larger stomatal conductance (gs) than Ailsa Craig. Decreased electron flux in PS2 (J PS2) for the Xa mutant was associated with electron flux for photorespiratory carbon oxidation (Jo) and alternative electron flux in PS2 (Ja) while electron flux for photosynthetic carbon reduction (Jc) was not different from Ailsa Craig. Moreover, the Xa mutant also exhibited higher activities of antioxidant enzymes, higher contents of ascorbate and glutathione, and lower contents of reactive oxygen species. Hence some compensatory acclimated mechanisms of photoprotection operated properly in the lack of NPQ and xanthophylls. and Y. J. Wang ... [et al.].
We determined the interactive effects of irradiance, elevated CO2 concentration (EC), and temperature in carrot (Daucus carota var. sativus). Plants of the cv. Red Core Chantenay (RCC) were grown in a controlled environmental plant growth room and exposed to 3 levels of photosynthetically active radiation (PAR) (400, 800, 1 200 µmol m-2 s-1), 3 leaf chamber temperatures (15, 20, 30 °C), and 2 external CO2 concentrations (Ca), AC and EC (350 and 750 µmol mol-1, respectively). Rates of net photosynthesis (PN) and transpiration (E) and stomatal conductance (gs) were measured, along with water use efficiency (WUE) and ratio of internal and external CO2 concentrations (Ci/Ca). PN revealed an interactive effect between PAR and Ca. As PAR increased so did PN under both C a regimes. The gs showed no interactive effects between the three parameters but had singular effects of temperature and PAR. E was strongly influenced by the combination of PAR and temperature. WUE was interactively affected by all three parameters. Maximum WUE occurred at 15 °C and 1 200 µmol m-2 s-1 PAR under EC. The Ci /Ca was influenced independently by temperature and Ca. Hence photosynthetic responses are interactively affected by changes in irradiance, external CO2 concentration, and temperature. EC significantly compensates the inhibitory effects of high temperature and irradiance on PN and WUE. and A. Thiagarajan, R. Lada, P. Joy.
Leaf tissue damaging to seedlings can limit their subsequent growth, and the effects may be more extensive. Compensatory photosynthesis responses of the remnant cotyledon and primary leaf of Pharbitis purpurea to clipping and the effect of clipping on seedling growth were evaluated in a pot-cultivated experiment. Three treatments were conducted in the experiment, which were clipped cotyledon (CC), clipped second leaf (CL), and control group (CG). The area, thickness, mass, and longevity of the remaining cotyledon of CC exhibited over-compensatory growth. In contrast, seedlings of CC had under-compensatory growth in seedling height, root length, seedling mass, and root to shoot ratio. However, the traits of remnant cotyledon and seedling in CL treatment exhibited equal-compensatory growth. Net photosynthetic rate of the cotyledon of CC was significantly higher than those of CL and CG treatments, and the diurnal changes in photosynthetic rates showed significantly different patterns which were unimodal curve (CC) and bimodal curve (CL and CG), respectively. There was no significant difference between CL and CG treatment. Net photosynthetic rate of the primary leaf of CL was significantly higher than that of CG treatment. However, the photosynthetic rates of primary leaves of CL and CG treatments showed similar photosynthetic patterns characterized by a bimodal curve. P. purpurea seedlings used a compensatory growth strategy in the remaining cotyledon or the primary leaf to resist leaf loss and minimize any adverse effects. and W. Zheng ... [et al.].
Competition plays an important role in the replacement of native species by alien plants. A greenhouse experiment was conducted to investigate whether the competition pattern of alien Robinia pseudoacacia L. and native Quercus acutissima Carr. is affected by soil sterilization. Physiological traits, such as gas-exchange parameters and chlorophyll (Chl) content, and growth traits, such as the biomass accumulation of the two species, were examined in natural soil or in soil sterilized with benomyl. The results show that native Q. acutissima inhibits the growth of R. pseudoacacia in natural soil. When the two plants coexisted and competed under sterilization treatment, R. pseudoacacia was less inhibited by Q. acutissima and the competition of R. pseudoacacia decreased the growth of Q. acutissima in terms of biomass, Chl a, Chl b, total Chl, and Chl a/b. These results suggest that soil sterilization benefits the growth of R. pseudoacacia and changes the competition pattern by the changed soil biota. Soil sterilization increased the biomass of root nodules, which ultimately benefits the growth of R. pseudoacacia and root nodule bacteria may be important in the dispersal and invasion process of nitrogen-fixing alien plants such as R. pseudoacacia., H. Chen ... [et al.]., and Obsahuje bibliografii
Interspecific competition between fat hen (Chenopodium album L.) and sunflower (Helianthus annuus L. NSH-33 hybrid) in pure and mixed stands of identical plant density (35 x 35 cm spacing) was studied in smáli plot field experiments under drought stress. Decrease in net photosynthetic rate (E^) due to interspecific competition was not statistically significant in either species in the first part of the growing season. During drought stress, however, significantly decreased in sunflower, while it hardly changed in C. album in the same (interspecific) competition situation. In pure stands, transpiration rate (E) was lower in C. album than in sunflower and this difference was more pronoímced in mixed stands. Consequently, C. album showed a very high water use efficiency (WUE) especially in the shade layer, which accounts for a larger part of the canopy in this species. By contrast, WUE in sunflower decreased, especially in the sun layer of the mixed stand. Interspecific competition reduced the total biomass more severely in sunflower than in C. album by the end of the growing season. The reduction was especially remarkable in the biomass of the reproductive organs. Reproductive effort expressed as reproductive allocation was higher in C. album than in sunflower. Hence the reproductive effort in sunflower and C. album in both intra- and interspecific competition seemed to be correlated with WUE, which is a prime characteristic of drought stress tolerance.
Using a radiogasometric method the rates of photorespiratory and respiratory decarboxylations of primary and stored photosynthates in the leaves of two groups of C3 species, differing in the ability of starch accumulation, were determined. One group included starch-accumulating (SA) species with rates of starch synthesis on the average 38 % the rate of photosynthesis [Solanum tuberosum L., Arabidopsis thaliana (L.) Heynh, Helianthus annuus L., and Plantago lanceolata L.]. The second group represented starch-deficient (SD) species with rates of starch synthesis less than 8 % the rate of photosynthesis (Secale cereale L., Triticum aestivum L., Hordeum vulgare L., and Poa trivialis L.). In SA species the rate of respiration in the dark was significantly higher than in SD species. No differences were found in the rates of photosynthesis, photorespiration, and respiration under irradiation. Thus, the degree of inhibition of respiration by irradiation was in SA species higher than in SD species. It is concluded that starch does not provide substrates for respiratory and photorespiratory decarboxylations in irradiated photosynthesizing leaves. and H. Ivanova ... [et al.].
As compared with the swamp reed (SR) ecotype of Phragmites communis growing in the desert region of northwest China, plants of the dune reed (DR) ecotype from the same region possessed lower chlorophyll (Chl) content in leaves, and less thylakoids and grana stacks in chloroplasts. Tube gel electrophoresis without stain showed that the contents of Chl-protein (Pro) components related to photosystem 2 (PS2) were markedly lower in the DR thylakoid membranes than in the SR thylakoid membranes, while the contents of Chl-Pro components associated with PS1 were almost the same in both types. SDS-PAGE analysis indicated that the content of polypeptides of the light-harvesting Chl a/b complex of PS2 (LHC2) was lower in the DR thylakoids. Besides, the conformation of LHC2 within the DR thylakoid membranes was also altered as indicated by circular dichroism spectra. Hence in the DR, reduced energy harvesting by declining the size of LHC2 might be responsible for the down-regulated PS2 activity. Chl fluorescence parameters. Fv/Fm and quantum efficiency of PS2 (ΦPS2), were lower in the DR leaves than in the SR ones. However, non-photochemical quenching coefficient (qN) was greater in DR than that in SR, implying other energy dissipation way exists in the DR photosynthetic membranes. and X. Y. Zhu, S. M. Wang, C. L. Zhang.