The January 2018 release of the ParaCrawl is the first version of the corpus. It contains parallel corpora for 11 languages paired with English, crawled from a large number of web sites. The selection of websites is based on CommonCrawl, but ParaCrawl is extracted from a brand new crawl which has much higher coverage of these selected websites than CommonCrawl. Since the data is fairly raw, it is released with two quality metrics that can be used for corpus filtering. An official "clean" version of each corpus uses one of the metrics. For more details and raw data download please visit: http://paracrawl.eu/releases.html
This multilingual resource contains corpora in which verbal MWEs have been manually annotated. VMWEs include idioms (let the cat out of the bag), light-verb constructions (make a decision), verb-particle constructions (give up), inherently reflexive verbs (help oneself), and multi-verb constructions (make do). This is the first release of the corpora without an associated shared task. Previous version (1.2) was associated with the PARSEME Shared Task on semi-supervised Identification of Verbal MWEs (2020). The data covers 26 languages corresponding to the combination of the corpora for all previous three editions (1.0, 1.1 and 1.2) of the corpora. VMWEs were annotated according to the universal guidelines. The corpora are provided in the cupt format, inspired by the CONLL-U format. Morphological and syntactic information, including parts of speech, lemmas, morphological features and/or syntactic dependencies, are also provided. Depending on the language, the information comes from treebanks (e.g., Universal Dependencies) or from automatic parsers trained on treebanks (e.g., UDPipe). All corpora are split into training, development and test data, following the splitting strategy adopted for the PARSEME Shared Task 1.2. The annotation guidelines are available online: https://parsemefr.lis-lab.fr/parseme-st-guidelines/1.3 The .cupt format is detailed here: https://multiword.sourceforge.net/cupt-format/
Wikipedia plain text data obtained from Wikipedia dumps with WikiExtractor in February 2018.
The data come from all Wikipedias for which dumps could be downloaded at [https://dumps.wikimedia.org/]. This amounts to 297 Wikipedias, usually corresponding to individual languages and identified by their ISO codes. Several special Wikipedias are included, most notably "simple" (Simple English Wikipedia) and "incubator" (tiny hatching Wikipedias in various languages).
For a list of all the Wikipedias, see [https://meta.wikimedia.org/wiki/List_of_Wikipedias].
The script which can be used to get new version of the data is included, but note that Wikipedia limits the download speed for downloading a lot of the dumps, so it takes a few days to download all of them (but one or a few can be downloaded fast).
Also, the format of the dumps changes time to time, so the script will probably eventually stop working one day.
The WikiExtractor tool [http://medialab.di.unipi.it/wiki/Wikipedia_Extractor] used to extract text from the Wikipedia dumps is not mine, I only modified it slightly to produce plaintext outputs [https://github.com/ptakopysk/wikiextractor].
This corpora is part of Deliverable 5.5 of the European Commission project QTLeap FP7-ICT-2013.4.1-610516 (http://qtleap.eu).
The texts are Q&A interactions from the real-user scenario (batches 1 and 2). The interactions in this corpus are available in Basque, Bulgarian, Czech, English, Portuguese and Spanish.
The texts have been automatically annotated with NLP tools, including Word Sense Disambiguation, Named Entity Disambiguation and Coreference resolution. Please check deliverable D5.6 in http://qtleap.eu/deliverables for more information.
Pretrained model weights for the UDify model, and extracted BERT weights in pytorch-transformers format. Note that these weights slightly differ from those used in the paper.
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
This release is special in that the treebanks will be used as training/development data in the CoNLL 2017 shared task (http://universaldependencies.org/conll17/). Test data are not released, except for the few treebanks that do not take part in the shared task. 64 treebanks will be in the shared task, and they correspond to the following 45 languages: Ancient Greek, Arabic, Basque, Bulgarian, Catalan, Chinese, Croatian, Czech, Danish, Dutch, English, Estonian, Finnish, French, Galician, German, Gothic, Greek, Hebrew, Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Kazakh, Korean, Latin, Latvian, Norwegian, Old Church Slavonic, Persian, Polish, Portuguese, Romanian, Russian, Slovak, Slovenian, Spanish, Swedish, Turkish, Ukrainian, Urdu, Uyghur and Vietnamese.
This release fixes a bug in http://hdl.handle.net/11234/1-1976. Changed files: ud-tools-v2.0.tgz (conllu_to_text.pl, conllu_to_conllx.pl; added text_without_spaces.pl), ud-treebanks-conll2017.tgz (fi_ftb-ud-train.txt, he-ud-train.txt, it-ud-train.txt, pt_br-ud-train.txt, es-ud-train.txt) and ud-treebanks-v2.0.tgz (fi_ftb-ud-train.txt, he-ud-train.txt, it-ud-train.txt, pt_br-ud-train.txt, es-ud-train.txt, ar_nyuad-ud-dev.txt, ar_nyuad-ud-test.txt, ar_nyuad-ud-train.txt, cop-ud-dev.txt, cop-ud-test.txt, cop-ud-train.txt, sa-ud-dev.txt, sa-ud-test.txt, sa-ud-train.txt).
Universal Dependencies is a project that seeks to develop cross-linguistically consistent treebank annotation for many languages, with the goal of facilitating multilingual parser development, cross-lingual learning, and parsing research from a language typology perspective. The annotation scheme is based on (universal) Stanford dependencies (de Marneffe et al., 2006, 2008, 2014), Google universal part-of-speech tags (Petrov et al., 2012), and the Interset interlingua for morphosyntactic tagsets (Zeman, 2008).
This release contains the test data used in the CoNLL 2017 shared task on parsing Universal Dependencies. Due to the shared task the test data was held hidden and not released together with the training and development data of UD 2.0. Therefore this release complements the UD 2.0 release (http://hdl.handle.net/11234/1-1983) to a full release of UD treebanks. In addition, the present release contains 18 new parallel test sets and 4 test sets in surprise languages. The present release also includes the development data already released with UD 2.0. Unlike regular UD releases, this one uses the folder-file structure that was visible to the systems participating in the shared task.