Different light filters affect leaf photosynthetic features and fruit quality. Consequently, selecting the appropriate covering filter for rain-shelter cultivation of peaches is a key part of successful production. We used a late-maturing peach variety ‘Xiahui 8’ to study differences in leaf photosynthetic features, chlorophyll fluorescence characteristics, and fruit quality under neutral, red, yellow, green, and blue filter, with natural light as control. The results showed that the leaf photosynthetic ability and internal quality under the neutral filter treatment were elevated compared with the control, and the appearance color was the same as the control. Leaves under neutral filter could maintain higher photosynthetic ability than other filter treatments. In addition, the fruits could also keep higher quality when treated with neutral filter. Therefore, the application of neutral filter in rain-shelter cultivation of ‘Xinhui 8’ peaches is recommended for maintaining high photosynthetic capacity and for improving fruit quality., B.-B. Zhang, J.-L. Xu, M. Zhou, D.-H. Yan, R.-J. Ma., and Obsahuje bibliografii
Lowering irradiance can delay the flower stalk, i.e., spike development, in order to schedule flowering time of Phalaenopsis; however, the effect on photosynthetic performance and spiking inhibition remains poorly understood. We compared light and shade treatments of Phalaenopsis aphrodite subsp. formosana in order to determine how limiting light affects day-night changes in the photosynthetic capacity of leaves and the carbon pool of leaves and stems resulting in delayed spiking. The low irradiance treatment [20 μmol(photon) m-2 s-1] for six weeks did not affect potential functions of photosynthetic apparatus estimated by chlorophyll a fluorescence analysis, but it significantly reduced the net CO2 uptake and O2 evolution rates, carbohydrate and organic acid concentrations, and amplitudes of CAM activity in new and fully expanded leaves of Phalaenopsis and delayed the spiking compared with the control kept at 150 μmol(photon) m-2 s-1. The shortened stem contained a remarkably high sucrose concentration, accounting for more than 80% of total soluble sugars for both treatments throughout the day. Moreover, the sucrose concentration was unaffected by the lowering of irradiance. The relationship between the sucrose content and spiking seemed to be loose; the major factor(s) for spiking in Phalaenopsis remained to be ascertained as the flower stalk bud is attached to the shortened stem., Y.-C. Liu, C.-H. Liu, Y.-C. Lin, C.-H. Lu, W.-H. Chen, H.-L. Wang., and Obsahuje seznam literatury
Melatonin has different functions in plant growth and development, especially in the protection of plants suffering from various forms of abiotic stress. We explored the effect of melatonin priming on photosynthetic activity of tomato (Lycopersicon esculentum L.) leaves. Our results showed that 100 µM is the optimal concentration used for alleviation of the damage to photosynthetic apparatus. Melatonin priming both in the form of leaf spray and direct root application was found to reduce the damage to photosynthetic apparatus, and increase the electron transfer rate and quantum yield of PSI and PSII photochemistry, to protect the thylakoid membrane from damage caused by low-temperature stress. Our study provides fundamental information for further research on the molecular mechanism of melatonin function in regulating photosynthesis., X. L. Yang, H. Xu, D. Li, X. Gao, T. L. Li, R. Wang., and Obsahuje bibliografii
The effects of NaCl (200 mM) and osmotic stress generated by polyethylene glycol (PEG) on PSII maximal quantum efficiency, photosynthetic CO2/H2O gas exchange at two CO2 concentrations, content of chlorophyll, proline, and malondialdehyde were investigated in shoots of C4 xerohalophyte Haloxylon aphyllum (Chenopodiaceae). The PEG treatment induced a low water osmotic potential (-0.4 MPa) and inhibited photosynthesis (by a factor of 2) and transpiration (by a factor of 4). The NaCl treatment, at equal osmoticity conditions, reduced transpiration (by a factor of 2) and stimulated photosynthesis (by a factor of 2.5). Only the
PEG-treated plants showed osmotic stress effects, which were demonstrated by an increase in proline and malondialdehyde contents in the shoot tissue. The data indicated that the halophilic character of this species was essential for maintaining the plant water status and photosynthesis under osmoticity induced by NaCl treatment. Herewith, the presence of C4-type photosynthesis appeared to be just an auxiliary mechanism, because this xerohalophyte did not reveal the efficiency in water use typical for C4 plants under osmotic stress, in the absence of a saline substrate., Z. F. Rakhmankulova, P. Yu. Voronin, E. V. Shuyskaya, N .A. Kuznetsova, N. V. Zhukovskaya, K. N. Toderich., and Obsahuje bibliografii
Calligonum caput-medusae is known to grow well when irrigated with water containing NaCl. The aim of this study was to investigate ecophysiological responses of C. caput-medusae to different NaCl concentrations. In our study, we examined the effect of 0, 50, 100, 200, and 400 mM NaCl. Our results demonstrated that maximum seedling growth occurred at 50 mM NaCl. Photosynthetic parameters, such as the photosynthetic pigment content and gas exchange parameters, correlated with growth response. High salinity (≥ 100 mM NaCl) resulted in a significant reduction of the plant growth. Similarly, marked declines in the pigment content, maximal efficiency of PSII photochemistry, net photosynthetic rate, transpiration rate, and stomatal conductance were also detected. However, intercellular CO2 concentration showed a biphasic response, decreasing with water containing less than 200 mM NaCl and increasing with NaCl concentration up to 400 mM. Water-use efficiency and intrinsic water-use efficiency exhibited the opposite response. The reduction of photosynthesis at the high NaCl concentration could be caused by nonstomatal factors. High salinity led also to a decrease in the relative water content and water potential. Correspondingly, an accumulation of soluble sugars and proline was also observed. Na+ and
Cl- concentrations increased in all tissues and K+ concentrations were maintained high during exposure to NaCl compared with the control. High salinity caused oxidative stress, which was evidenced by high malondialdehyde and hydrogen peroxide contents. In order to cope with oxidative stress, the activity of antioxidative enzymes increased to maximum after 50 mM NaCl treatment. The data reported in this study indicate that C. caput-medusae can be utilized in mild salinity-prone environments., Y. Lu, J.-Q. Lei, F.-J. Zeng, B. Zhang, G.-J. Liu, B. Liu, X.-Y. Li., and Obsahuje bibliografii
Nitrogen (N) availability is a critical factor affecting photosynthetic acclimation of C3 plants under elevated atmospheric CO2 concentration ([CO2]e). However, current understanding of N effects on photosynthetic electron transport rate and partitioning, as well as its impact on photosynthesis under [CO2]e, is inadequate. Using controlled environment open-top chambers, wheat (Triticum aestivum L.) was grown at two N levels (0 and 200 mg(N) kg-1 soil) and two atmospheric CO2 concentrations of 400 ([CO2]a) and 760 μmol mol-1([CO2]e) during 2009 and 2010. Under [CO2]e high N availability increased stomatal conductance and transpiration rate, reduced limitations on the activity of triose phosphate isomerase, a Calvin cycle enzyme, and increased the rate of net photosynthesis (PN). Considering photosynthetic electron transport rate and partitioning aspects, we suggest that greater N availability increased PN under [CO2]e due to four following reasons: (1) higher N availability enhanced foliar N and chlorophyll concentrations, and the actual photochemical efficiency of photosystem (PS) II reaction centers under irradiance increased, (2) increase of total electron transport rate and proportion of open PSII reaction centers, (3) enhancement of the electron transport rate of the photochemical and carboxylation processes, and (4) reduced limitations of the Calvin cycle enzymes on the photosynthetic electron transport rate. Consequently, sufficient N improved light energy utilization in wheat flag leaves under [CO2]e, thus benefiting to photosynthetic assimilation. and X. C. Zhang, X. F. Yu, Y. F. Ma.
In order to understand the physiological traits important in conferring salt tolerance in three barley genotypes, this study was performed under field conditions with three water salinity levels (2, 10, and 18 dS m-1). High salinity decreased net photosynthetic rate, transpiration rate, and stomatal conductance, K+ concentration, K+:Na+ ratio, and grain yield, but increased electrolyte leakage and Na+ content. Under 10 and 18 dS m-1 salinity, Khatam (salt-tolerant) had the maximum stomatal conductance, K+, K+:Na+ ratio, and the grain yield, and a minimum Na+ content and electrolyte leakage, whereas Morocco (salt-sensitive) had the lowest net photosynthetic rate, stomatal conductance, K+ content, K+:Na+ ratio, and grain yield, and the highest Na+ content and electrolyte leakage. This study showed that tolerant genotypes of barley may avoid Na+ accumulation in aboveground parts, facilitating a higher photosynthetic rate and higher grain yield., M. Mahlooji, R. Seyed Sharifi, J. Razmjoo, M. R. Sabzalian, M. Sedghi., and Obsahuje bibliografii
In order to study the mechanisms of Se-mediated growth improvement as related to carbon (C) and nitrogen (N) metabolism, wheat plants were cultivated hydroponically with adequate (4 mM, Na) or low (1 mM, Nd) N supply and treated with 10 and 50 μM Na2SeO4 for six weeks. The Se supplementation enhanced plant biomass; it was significant for shoots of Na plants at 50 μM Se. Chlorophyll fluorescence parameters were significantly lowered under Nd conditions but restored completely by Se addition reaching values of those in Na plants. Net CO2 assimilation rate (PN) decreased only slightly by limited N availability, but it enhanced significantly in both Nd and Na plants equally by 10 and 50 μM Se. Effect of Se on PN in the Na plants occurred mainly due to the stomata opening, while it was related to both stomatal and nonstomatal mechanisms in the Nd plants. The Se treatment resulted in enhancement of nitrate reductase (NR) activity in both Na and Nd plants with an optimal response at 10 μM Se. Negative correlations between nitrate concentration and NR activity indicated a partial nitrate depletion in the roots following by elevated NR activity in Nd plants. In contrast, nitrite concentrations were higher in the Se treated plants. Higher amino acids and protein concentrations in the Se-treated plants might be an indication of a general upregulation of N metabolism. However, in Na plants, the stimulation of N metabolism was not observed at 50 μM Se which could not be attributed to lesser availability of C skeletons because of maintaning higher CO2 fixation under these conditions. It implies the function of some regulatory mechanisms that are responsible for coordination of C and N metabolism in whole plant., R. Hajiboland, N. Sadeghzade., and Obsahuje bibliografii
The objective of this study was to investigate a response to low-light environments in hybrids and commercial cultivars of Boehmeria nivea L. Two hybrids (Chuanzhu 11 and Chuanzhu 8) and two commercial cultivars (Chuanzhu 12 and Chuanzhu 6) of ramie were subjected to a shade treatment for 6, 12, and 18 days. The shade treatment led to a significant decrease in some plant traits and fiber yield in four ramie cultivars, whereas their leaf area and plant height increased. In addition, net photosynthesis and stomatal conductance significantly declined in response to shade, while transpiration rate and intercellular CO2 did not significantly change. Moreover, chlorophyll (Chl) and carotenoid (Car) concentration, Chl/Car, and Chl (a+b) per leaf dry mass significantly increased in the response to shade, while the Chl a/b ratio decreased. Furthermore, Chuanzhu 6 and Chuanzhu 11 were more tolerant to shade than Chuanzhu 12 and Chuanzhu 8, thus, they could be potentially used for management practices and breeding programs., C.-J. Huang, G. Wei, Y.-C. Jie, J.-J. Xu, S. A. Anjum, M. Tanveer., and Seznam literatury
Little is known regarding to impact of simulated shading conditions on cotton yield and fiber quality at different fruiting positions. In this 2-year study, our field experiments investigated the effects of shading percentage on the cotton yield, fiber properties, photosynthesis, and carbohydrate concentrations in boll's subtending leaves during various growing stages at different fruiting positions (FP). Net photosynthetic rate and effective quantum yield of PSII photochemistry decreased in response to shading on both FP1 and FP3 of the 7th sympodial branches, respectively. Shading also reduced sucrose and starch contents of leaves at each fruiting position. Shading decreased the number and mass of cotton bolls, the fiber strength and micronaire, while the fiber length increased at both fruiting positions. Our results suggested that shading resulted in the reduction of the cotton yield and fiber quality, which are mainly associated with the changes in boll number and alteration of photosynthesis and carbohydrate concentrations during the boll development., B. L. Chen, H. K. Yang, Y. N. Ma, J. R. Liu, F. J. Lv, J. Chen, Y. L. Meng, Y. H. Wang, Z. G. Zhou., and Obsahuje bibliografii