Simultaneous measurements of leaf gas exchange and chlorophyll fluorescence for Koelreuteria paniculata Laxm. at 380 ± 5.6 and 600 ± 8.5 μmol mol-1 were conducted, and the photosynthetic electron flow via photosystem II (PSII) to photosynthesis, photorespiration, and other electron-consuming processes were calculated. The results showed that the photosynthetic electron flow associated with carboxylation (Jc), oxygenation (Jo), and other
electron-consuming processes (Jr) were 72.7, 45.7, and 29.4 μmol(e-) m-2 s-1 at 380 μmol mol-1, respectively; and 86.1, 35.3, and 48.2 μmol(e-) m-2 s-1 at 600 μmol mol-1, respectively. Our results revealed that other aspects associated with electronconsuming processes, except for photosynthesis and respiration, were neither negligible nor constant under photorespiratory conditions. Using maximum net photosynthetic rate (Pmax), day respiration (R), photorespiration rate (Rl), and maximum electron flow via PSII
(Jmax), the use efficiency of electrons via PSII at saturation irradiance to fix CO2 was calculated. The calculated results showed that the use efficiency of electrons via PSII to fix CO2 at 600 μmol mol-1 was almost as effective as that at 380 μmol mol-1, even though more electrons passed through PSII at 600 μmol mol-1 than at 380 μmol mol-1., Z. P. Ye, Q. Yu, H. J. Kang., and Obsahuje bibliografii
The changes in growth and photosynthetic performance of two wheat (Triticum aestivum L.) cultivars (Bolal-2973 and Atay-85) differing in their sensitivity to boron (B) toxicity were investigated under toxic B conditions. Eight-day old seedlings were exposed to highly toxic B concentrations (5, 7.5, and 10 mM H3BO3) for 5 and 9 days. Fast chlorophyll a fluorescence kinetics was determined and analysed using JIP test. Growth parameters, tissue B contents, and membrane damage were measured at two stress durations. The photochemical performance of PSII was hindered more in the sensitive cultivar (Atay-85) than that of the tolerant one (Bolal-2973) under B toxicity. The increase in the B concentration and stress duration caused membrane leakage in both cultivars. However, higher membrane damage was observed in Atay-85 compared to Bolal-2973. Additionally, significant reduction of growth parameters was observed in both cultivars at toxic B concentrations. The accumulation of B was higher in shoots than in roots of both cultivars. Nevertheless, Atay-85 translocated more B from roots to leaves compared to Bolal-2973. The advantages of certain JIP test parameters were demonstrated for evaluation of PSII activity in plants exposed to B stress. Evaluation of photosynthetic performance by JIP test as well as assessment of growth and tissue B content might be used to determine the effects of B toxicity in wheat. The results indicated lesser sensitivity to B toxicity in Bolal-2973 compared to Atay-85., M. T. Öz, Ö. Turan, C. Kayihan, F. Eyidoğan, Y. Ekmekçi, M. Yücel, H. A. Öktem., and Obsahuje bibliografii
Water availability is one of the most important limiting factors in agriculture worldwide, particularly in arid and semiarid regions. Six spring wheat genotypes, i.e. three UK cultivars Cadenza, Paragon, and Xi-19 and three synthetic-derived lines L-22, L-24, and L-38, were grown in a phytotron under well-watered (until 40 days after sowing) and drought conditions. The aim of the study was to evaluate the traits related to photosynthetic capacity (net photosynthesis rate, stomatal conductance, internal CO2 concentration, transpiration rate, carboxylation capacity, instantaneous and intrinsic water-use efficiency) and plant biomass production in the cultivars and synthetic derivatives of wheat genotypes under well-watered and water-limited conditions. Genotypic variations in gas-exchange traits including net photosynthetic rate, carboxylation capacity, instantaneous water-use efficiency, and biomass yield were found amongst genotypes. Drought significantly reduced the total dry matter per plant. The synthetic derivatives L-22 and L-24 showed higher performance of stomata for most of the stomatal aperture characteristics. Total dry matter was positively related to net photosynthetic rate and to instantaneous and intrinsic water-use efficiencies. Finally, net photosynthetic rate was also positively related to stomatal conductance and transpiration rate under both the well-watered and water-limited drought conditions., S. Sikder, J. Foulkes, H. West, J. De Silva, O. Gaju, A. Greenland, P. Howell., and Obsahuje bibliografii
The effectiveness of eight spectral reflectance indices for estimating chlorophyll (Chl) content in leaves of Eugenia uniflora L., a tropical tree species widely distributed throughout the world and a key species for ecosystem restoration projects, was evaluated. Spectral reflectance indices were tested using sun and shade leaves with a broad variation in leaf mass per area (LMA). Shortly after plants were exposed to chilling temperatures, there was a dramatic visible change in some sun leaves from green to red. Prior to testing Chl-related reflectance indices, the green and red leaves were separated according to the anthocyanin reflectance index (ARI). Slightly green to dark green leaves corresponded to an ARI value less than 0.11 (n = 107), whereas slightly red to red leaves corresponded to an ARI value greater than 0.11 (n = 35). To estimate leaf Chl, two simple reflectance indices (SR680 and SR705), two normalized difference indices (ND680 and ND705), two modified reflectance indices (mSR705 and mND705), a modified Chl absorption ratio index (mCARI705) and an index insensitive to the presence of anthocyanins (CIre) were evaluated. Good estimates of leaf Chl content were obtained using the reflectance indices tested regardless of the presence of anthocyanins and changes in LMA. Based on the coefficients of determination (r2) and the root mean square errors (RMSɛc) the best results were obtained with reflectance indices measured at wavelengths of 750 and 705 nm. Considering the performance of the models the best reflectance indices to estimate Chl contents in E. uniflora leaves with a broad variation in LMA and anthocyanin contents was SR705 and mCARI705., M. S. Mielke, B. Schaffer, A. C. Schilling., and Obsahuje bibliografii
Wild Arachis genotypes were analysed for chlorophyll a fluorescence, carbon isotope discrimination (ΔC), specific leaf area (SLA), and SPAD readings. Associations between different traits, i.e., SLA and SPAD readings (r =-0.76), SLA and ΔC (r = 0.42), and ΔC and SPAD readings (r = 0.30) were established. The ratio of maximal quantum yield of PSII photochemistry (Fv/Fm) showed a wider variability under water deficit (WD) than that after irrigation (IR). Genotypes were grouped according to the Fv/Fm ratio as: efficient, values between 0.80 and 0.85; moderately efficient, the values from 0.79 to 0.75; inefficient, the values < 0.74. Selected Selected genotypes were evaluated also for their green fodder yield: the efficient genotypes ranged between 3.0 and 3.8, the moderately efficient were 2.6 and 2.7, the inefficient genotypes were of 2.3 and 2.5 t ha-1 per year in 2008 and 2009, respectively. Leaf
water-relation traits studied in WD and IR showed that the efficient genotypes were superior in maintenance of leaf water-relation traits, especially, under WD. Potential genotypes identified in this study may enhance biomass productivity in the semiarid tropic regions., P. C. Nautiyal, A. L. Rathnakumar, G. Kulkarni, M. S. Sheshshayee., and Obsahuje bibliografii
Both, severe hypo- or hyperthyroidism may alter hemodynamic parameters. The aim of our study was to ascertain, whether also distinct changes within normal range of free thyroxine (fT4) would be associated with an impairment of left ventricle function in patients with chronic heart failure. Hundred-forty-eight patients (m121, f27, mean age 63.8±1.14 years) with chronic heart failure, fT4 levels within the normal range (9-22 pmol/l) and without thyrostatics or substitution treatment. Degree of heart failure was quantified by plasma B-type natriuretic peptide (BNP) and N-terminal pro-BNP (NT-proBNP). Patients with fT4 in the range 11.9-14.6 pmol/l [optimal, 2nd-3th quintile] had significantly lower NT-proBNP (718±70.4 pg/ml), than those with fT4<11.8 [low-normal, bottom quintile](1236±223.6 pg/ml; p<0.03) and those with fT4 over 14.6 pmol/l [high-normal, top two quintiles] (1192±114.9 pg/ml; p<0.0002). These differences remain significant, also if adjusted for age, gender and other confounders; adjusted odds ratio was 1.30 (1.05-1.59) for optimal vs. low-normal and 1.27 (1.04-1.55) for optimal vs. high-normal. Similar statistical differences were also found in BNP, but only when optimal and high-normal fT4 ranges were compared. In conclusion, the severity of heart failure seems to be also influenced by only mild deviations of fT4 concentrations from optimal levels., O. Mayer Jr, J. Šimon, J. Čech, H. Rosolová, J. Hrbková, R. Pikner, L. Trefil., and Obsahuje bibliografii a bibliografické údaje
Epigenetická regulace aktivity genů může významnou měrou ovlivňovat fenotypovou variabilitu organismů. Vzhledem k tomu, že některá indukovaná epigenetická variabilita může být děděna po mnoho generací, je možné, že epigenetická variabilita ovlivňuje jak ekologii, tak i evoluční trajektorie organismů. V článku popisuji některé poslední poznatky úlohy epigenetické variability v ekologii a evoluci rostlin., Phenotypic variation can be driven by epigenetic regulation of genes' activity. It is possible that induced epigenetic variation can alter the ecology and evolutionary trajectories of organisms because some induced epigenetic variation can be faithfully heritable among several generations. In the article, I discuss some recent information about the role of epigenetic variation in the ecology and evolution of plants., and Vít Latzel.
Changes in photosynthetic attributes related to genetic improvement of cotton yield were studied in seven Chinese cotton cultivars widely grown in Xinjiang during the past 30 years. Our results showed that a chlorophyll (Chl) content and net photosynthetic rate (PN) of the 1980s cultivar was the highest among all after 60 days from planting (DAP). However, after 75 DAP, the Chl content, PN, and actual photochemical efficiency of PSII of the old cultivars declined gradually, whereas those of the new cultivars remained relatively high. Compared to the old cultivars, leaves of the new cultivars endured a longer period and their senescence was slower, shoot and boll dry mass was higher, but the root to shoot ratio was lower. The lint yield of the 2000s cultivars was 14.7 and 21.4% higher than that of 1990s and 1980s cultivars, respectively. The high yield of the new cultivars was attributed to a greater number of bolls per unit of area with high lint percentage. We suggested that the improved photosynthetic capacity and the increased ability to deliver photosynthates to reproductive sites during the peak boll-setting stage to boll-opening stage were the key physiological basis in the evolution process of cotton cultivars from 1980s to 2000s for the cotton yield improvement within a short growing period., H. H. Luo, H. L. Zhang, Y. L. Zhang, W. F. Zhang., and Obsahuje bibliografii
Excitation kinetics based on feedback regulation of chlorophyll (Chl) fluorescence of leaves measured with the chlorophyll fluorometer, FluoroMeter Modul (FMM), are presented. These kinetics showed the variation of excitation light (laser power, LP) regulated by the feedback mechanism of the FMM, an intelligent Chl fluorometer with embedded computer, which maintains the fluorescence response constant during the 300-s transient between the dark- and light-adapted state of photosynthesis. The excitation kinetics exhibited a rise of LP with different time constants and fluctuations leading to a type of steady state. The variation of excitation kinetics were demonstrated using the example of primary leaves of etiolated barley seedlings (Hordeum vulgare L. cv. Barke) during 48 h of greening in the light with gradual accumulation of Chl and development of photosynthetic activity. The excitation kinetics showed a fast rise followed by a short plateau at ca. 30 s and finally a slow constant increase up to 300 s. Only in the case of 2 h of greening in the light, the curve reached a stable steady state after 75 s followed by a slight decline. The final LP value (at 300 s of illumination) increased up to 12 h of greening and decreased with longer greening times. The active feedback mechanism of the FMM adjusted the excitation light during the measurement to the actual photosynthetic capacity of the individual leaf sample. In this way, the illumination with excessive light was avoided. The novel excitation kinetics can be used to characterize health, stress, disease, and/or product quality of plant material., C. Buschmann ... [et al.]., and Obsahuje bibliografii