The calcium hypothesis of neurodegenerative disorders such as Alzheimer´s disease (AD) suggests that altered cytosolic Ca2+ levels ([Ca2+]i) and/or disturbances in Ca2+ homeostasis concern cellular mechanisms underlying neuronal pathology. To search for a diagnostic marker of Alzheimer´s disease, we measured cytosolic calcium concentrations in platelets of AD patients, age-matched control subjects (AMC), and vascular dementia (VD) patients. The ([Ca2+]i) was determined using long wavelength indicator Fluo-3AM in 21 mild AD patients, 17 AMC, and 23 patients with VD. The basal values of [Ca2+]i were significantly lower in AD compared to AMC. After the addition of 1 mM calcium, the [Ca2+]i markedly increased in platelets of AD compared to AMC and VD. Measurement of calcium homeostasis could provide a very sensitive, but less specific biological marker of AD. These results support the hypothesis that influencing calcium homeostasis may provide a therapeutic strategy in dementia.
Cotyledonary leaves of Cucumis sativus cv. Poinsette exhibited senescence-induced losses in chlorophyll (Chl) and protein contents within three weeks since germination. Chl and protein concentrations in cotyledonary leaves approached maximum on 6th d after germination and they declined to 50 and 41 %, respectively, by the 20th day of growth. Activities of both photosystem (PS) 2 and PS1 decreased by 33 and 31 %, respectively, on the 20th day, compared to the control 6th day. Changes in sensitivity of PS2 to inhibitors like atrazine and dibromothymoquinone and sensitivity of PS1 to KCN accompanied the changes in PS2 and PS1 activities. Hence both the acceptor side of PS2 and the donor side of PS1 are affected by senescence-induced changes in cucumber cotyledonary leaves. and J. S. S. Prakash, M. A. Baig, Prasanna Mohanty.
The study deals with activity of three antioxidant enzymes, copper, zinc-superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), catalase (CAT) in hippocampus of rats, following the exposure to single chronic (individual housing or forced swimming) and acute (immobilization or cold) stress, as well as to combined chronic/acute stress. In addition, plasma noradrenaline (NA) and adrenaline (A) concentrations were measured in the same stress conditions, because their autooxidation can add to the oxidative stress. We observed that i) long-term social isolation and repeated forced swimming had minor effects on plasma catecholamines, but in the long-term pretreated groups, acute stressors caused profound elevation NA and A levels, ii) chronic stressors activate antioxidant enzymes, iii) acute stressors decrease catalase activity, their effects on CuZnSOD appear to be stressor-dependent, whereas MnSOD is not affected by acute stressors, and iv) pre-exposure to chronic stress affects the antioxidant-related effects of acute stressors, but this effect depends to a large extent on the type of the chronic stressor. Based on both metabolic and neuroendocrine data, long-term isolation appears to be a robust psychological stressor and to induce a “priming” effect specifically on the CuZnSOD and CAT activity.
Winter wheat (Triticum aestivum L.) cultivars Yangmai 9 (water-logging tolerant) and Yumai 34 (water-logging sensitive) were subjected to water-logging (WL) from 7 d after anthesis to determine the responses of photosynthesis and anti-oxidative enzyme activities in flag leaf. At 15 d after treatment (DAT), net photosynthetic rate under WL was only 3.7 and 8.9 µmol(CO2) m-2 s-1 in Yumai 34 and Yangmai 9, respectively, which was much lower than in the control. Ratios of variable to maximum and variable to initial fluorescence, actual photosynthetic efficiency, and photochemical quenching were much lower, while initial fluorescence and non-photochemical quenching were much higher under WL than in control, indicating damage to photosystem 2. WL decreased activities of superoxide dismutase and catalase in both cultivars, and activity of peroxidase (POD) in Yumai 34, while POD activity in Yangmai 9 was mostly increased. The obvious decrease in the amount of post-anthesis accumulated dry matter, which was redistributed to grains, also contributed to the grain yield loss under WL. and W. Tan ... [et al.].
STR/N is an inbred strain of mice which is known to exhibit extreme polydipsia and polyuria. We previously found central administration of angiotensin II enhanced cardiovascular responses in STR/N mice than normal mice, suggesting that STR/N mice might exhibit different cardiovascular responses. Therefore, in this study, we investigated daily mean arterial blood pressure and heart rate, and changes in the baroreceptor-heart rate reflex in conscious STR/N mice and control (ICR) mice. We found that variability in daily mean arterial blood pressure and heart rate was significantly larger in STR/N mice than in ICR mice (p<0.05). There was a stronger response to phenylephrine (PE) in STR/N mice than in ICR mice. For baroreceptor reflex sensitivity, in the rapid response period, the slopes of PE and sodium nitroprusside (SNP) were more negative in STR/N mice than in ICR mice. In the later period, the slopes of PE and SNP were negatively correlated between heart rate and blood pressure in ICR mice, but their slopes were positively correlated in STR/N mice. These results indicated that STR/N mice exhibited the different cardiovascular responses than ICR mice, suggesting that the dysfunction of baroreceptor reflex happened in conscious STR/N mice., C. P. Chu, B. R. Cui, H. Kannan, D. L. Qiu., and Obsahuje bibliografii
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA- damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured an imals when compared to acute and chronic sham groups. Our da ta has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy., T. Dagci, G. Armagan, S. Konyalioglu, A. Yalcin., and Obsahuje bibliografii
Both brain and peripheral nitric oxide (NO) play a role in the control of blood pressure and circ ulatory homeostasis. Central NO production seems to counteract angiotensin II-induced enhancement of sympathetic tone. The aim of our study was to evaluate NO synthase (NOS) activity and protein expression of its three isoforms - neuronal (nNOS), endothelial NOS (eNOS) and inducible (iNOS) - in two brain regions involved in blood pressure control (diencephalon and brainstem) as well as in the kidney of young adult rats with either genetic (12-week-old SHR) or salt- induced hypertension (8-week-old Dahl rats). We have demonstrated reduced nNOS and iNOS expression in brainstem of both hypertensive models. In SHR this abnormality was accompanied by attenuated NOS activity and was corrected by chronic captopril treatment which prevented the development of genetic hypertension. In salt hypertensive Dahl rats nNOS and iNOS expression was also decrea sed in the diencephalon where neural structures important for salt hypertension development are located. As far as peripheral NOS activity and expression is concerned, renal eNOS expression was considerably reduced in both genetic and salt-induced hypertension. In conclusions, we disclosed similar changes of NO system in the brainstem (but not in the diencephalon) of rats with genetic and salt-induced hypertension. Decreased nNOS ex pression was associated with increased blood pressure due to enhanced sympathetic tone., S. Hojná, J. Kuneš, J. Zicha., and Obsahuje bibliografii
This review summarizes our findings concerning the altered balance of vasoactive systems (namely sympathetic nervous system and nitric oxide) in various forms of experimental hypertension – genetic hypertension (SHR, HTG rats), salt hypertension (Dahl rats) and NO-deficient hypertension (L-NAME-treated rats). An attempt is made to define relative NO deficiency (compared to the existing level of sympathetic vasoconstriction), to describe its possible causes and to evaluate particular indicators of its extent. A special attention is paid to reactive oxygen species, their interaction with NO metabolism, cell Ca2+ handling and blood pressure regulation. Our current effort is focused on the investigation of abnormal regulation of cytosolic Ca2+ levels in smooth muscle and endothelium of hypertensive animals. Such a research should cl
arify the mechanisms by which genetic and/or environmental factors could chronically modify blood pressure level.
The aim was to study the blood-brain permeability according to the distribution in the rat brain of Evans blue (EB) and sodium fluorescein (NaFl) administered by an intracarotid injection. Eighteen animals were divided into six groups according to the state of the blood-brain barrier (BBB) at the moment when the dyes were being applied. In the first two groups, the BBB was intact, in groups 3 and 4 the barrier had been opened osmotically prior to the application of the dyes, and in groups 5 and 6 a cellular edema was induced by hyperhydration before administration of the dyes. The intracellular and extracellular distribution of the dyes was studied by fluorescence microscopy. The histological picture thus represented the morphological correlate of the way BBB permeability had been changed before the application of the dyes., P. Kozler, J. Pokorný., and Obsahuje bibliografii
Cardiac fibrotization is a well-known process characteristic of many cardiac pathological conditions. The key element is excessive activation of cardiac fibroblasts, their transdifferentiation into myofibroblasts, increased production, and accumulation of extracellular matrix proteins, resulting in cardiac stiffness. The exact cellular mechanisms and molecular components involved in the process are not fully elucidated, but the SOCE mechanism could play an important role. Its key molecules are the molecular sensor of calcium in ER/SR - STIM and the highly selective calcium channels Orai located in the plasma membrane. This study aims to evaluate selected SOCEassociated genes in the activation of HCF cell culture by several known substances (phenylephrine, isoprenaline) that represent cardiovascular overload. After cell cultivation, cell medium was collected to measure the soluble collagen content. From the harvested cells, qRT-PCR was performed to determine the mRNA levels of the corresponding genes. The activation of cells was based on changes in the relative expression of collagen genes as well as the collagen content in the medium of the cell culture. We detected an increase in the expression of the Orai2 isoform, a change in the Orai1/Orai3 ratio and also an increase in the expression of the STIM2 isoform. These results suggest an increased activation of the SOCE mechanism under stress conditions of fibroblasts, which supports the hypothesis of fibroblast activation in pathological processes by altering calcium homeostasis through the SOCE mechanism., Róbert Čendula, Nikola Chomaničová, Adriana Adamičková, Andrea Gažová, Ján Kyselovič, Marek Máťuš., and Obsahuje bibliografii