The effect of suramin, an inhibitor of G protein regulated signalling, was studied on the membrane currents induced by noxious heat and by capsaicin in cultured dorsal root ganglia neurones isolated from neonatal rats. Whole-cell responses induced by a heat ramp (24-52 °C) were little affected by suramin. The noxious heat-activated currents were synergistically facilitated in the presence of 0.3 µM capsaicin 13.2-fold and 6.3-fold at 40 °C and 50 °C, respectively. In 65% of neurones, the capsaicin-induced facilitation was inhibited by 10 µM suramin to 35±6 % and 53±6 % of control at 40 °C and 50 °C (S.E.M., n=15). Suramin 30 µM caused a significant increase in the membrane current produced by a nearly maximal dose (1 µM) of capsaicin over the whole recorded temperature range (2.4-fold at 25 °C and 1.2-fold at 48 °C). The results demonstrate that suramin differentially affects the interaction between capsaicin and noxious heat in DRG neurones and thus suggest that distinct transduction pathways may participate in vanilloid receptor activation mechanisms., V. Vlachová, A. Lyfenko, L. Vyklický, † R.K. Orkand., and Obsahuje bibliografii
In the Baixo Vouga region of north-central Portugal, forests occupy half of the territory, of which two thirds are Eucalypts plantations. The hydrological implications of this large-scale introduction of eucalypt are unknown and the aim of this exploratory study, realized in the Caramulo Mountains, was to describe overland flow (OLF), subsurface flow (SSF) and stream flow (Q) in a catchment dominated by Eucalyptus plantations. The main conclusions are that annual OLF rate is low, spatially heterogeneous between 0.1% and 6% and concentrated during the wet season as saturation excess, particularly as return flow. Infiltration-excess OLF due to the strong soil water repellence (SWR) is dominant during dry season, but produces residual runoff amount. SSF is the principal mechanism of runoff formation. It originates from matrix flow and pipe flow at the soil-bedrock interface, principally during the wet season. Matrix flow is correlated with soil moisture (SM) content, with a threshold of 25 %. Pipe flow starts with saturation of soil bottom but without saturation of the entire soil profile, due to a large network of macropores. Stream flow response is highly correlated with matrix flow behaviour in timing and intensity. SWR induces a very patchy moistening of the soil, concentrates the fluxes and accelerates them almost 100 times greater than normal percolation of the water in the matrix.
Wheat seedlings (Triticum aestivum L.) develop plastids (etioplasts and chloroplasts) which exhibit alterations in inner membrane organisation after treatment with Norflurazon (NF), an inhibitor of carotenoid biosynthesis. In dark-grown plants, it results in a decreased amount of partitions (contact zones) between prothylakoids. Under weak red radiation (WRR), plants contain chloroplasts devoid of grana. Using the fluorescent probe 9-amino acridine (9-AA), the average surface charge density of isolated prothylakoids (PTs) was -21.8±3.2 mC m-2 and -27.4±2.6 mC m-2 in the control and after treatment, respectively. Thylakoid membranes isolated from plants grown under WRR exhibited slightly more negative values, -23.5±2.9 mC m-2 and -29.0±2.1 mC m-2, in control and after NF treatment, respectively. The surface charge density of de-stacked thylakoids from greenhouse-grown untreated plants, containing extensive grana stacking, was -34.3±2.5 mC m-2. Assays using the fluorescent probe of DPH (1,6-diphenyl-1,3,5-hexatriene) showed a higher polarisation value when incorporated into thylakoids from NF-treated plants compared to untreated plants grown under WRR. The highest polarisation value was found in untreated plants grown in the greenhouse. This indicates a lower rotation transition of the probe in the lipid environment of thylakoids after NF treatment, which can be interpreted as more rigid membranes. Hence the surface charge density and the mobility of membrane components may play a major role for the formation of partitions in dark-grown plants and in the formation of grana in plants grown under WRR.
Measurements of ultrastructural characteristics of chloroplast thylakoids are important for studies of ontogenic or ecological limitations of leaf photosynthetic functions. Most frequently, volumetric proportion of thylakoids in the chloroplast is measured; however, such measurement does not provide a direct information about the surface area of thylakoids which is most important from the functional point of view. Therefore, we adapted the stereological method using "local vertical windows" for estimating thylakoid surface area in the chloroplast volume and compared thus obtained surface density results with results of conventional volume density measurements. The methods were tested in the study of chloroplast ultrastructure in the leaves of plants of two maize (Zea mays L.) hybrid combinations, 2013×CE810 and CE704×CE810, developing in control and chilling conditions. Correlation analysis revealed a tight relationship between the granal/intergranal thylakoid surface density and volume density results, both indicating that under chilling conditions the development of the system of thylakoids in maize leaves is suppressed, while the difference is more pronounced in CE704 than in CE810 genotype, known to have a better photosynthetic performance. and L. Kubínová, J. Kutík.
Materials on the basis of cycloolefin copolymers (COC) are suitable for subchondral defect repairs. The objective of this study was to evaluate the influence of surface modification of COC and COC/LLDPE blends on the viability and gene expression of chondrocytes. Human chondrocytes were incubated on the surface of the studied materials. Half of the materials were plasmatically modified with a subsequent type II collagen application. The gene expression of matrix metalloproteinases (MMP-1,-3,-13), pro-inflammatory cytokines (IL-1, TNF-alpha) and apoptotic molecules (BAX, Bcl-2) was evaluated using quantitative Taq-Man PCR after 48 h incubation. Chondrocyte viability was evaluated by the MTT test after 2, 4 and 8 days of incubation. The synthesis of MMPs was measured by ELISA assay in cell culture medium after 48 h of incubation. Chondrocytes incubated on plasmatically modified in contrast to unmodified materials demonstrated significantly increased gene expression of IL-1 (p<0.05), MMP-1 and MMP-3 (p<0.05 for both comparisons) as well as MMP-13 (p<0.001). Increased gene expression was confirmed by significantly increased production of active forms of particular MMPs into the cell culture medium. Unlike surface unmodified polymers, the modified materials showed timedependent reduction of chondrocyte viability. The gene expression of TNF-α and apoptotic molecules by chondrocytes was not significantly changed by different materials. Cycloolefin copolymers and their blends may represent suitable materials for tissue engineering, however, their surface modification followed by collagen type II application may, at least under in vitro conditions, reduce the viability of chondrocytes and induce their pro-destructive behavior. The potential benefit or disadvantage of surface modifications of materials for osteochondral defect repairs needs to be further elucidated., M. Polanská ... [et al.]., and Obsahuje bibliografii a bibliografické odkazy
Brachylaimus fuscatus metacercaria develops unencysled in the terrestrial snail Ponsadenia duplocincta. For the first time in a larval stage of the genus Brachylaimus a distinctive surface structure has been observed. This structure of net-like interconnected ridges of the tegument was present on the whole body surface with the exception of the anterior part. Beside this structure scanning electron microscopy revealed five types of papillae. Three types, dome-like papillae, papillae with a finger-like process, and hollow papillae with a short cilium, were localized mainly in the suckers. Hollow papillae without a cilium were arranged in groups or singly around the ventral sucker and genital pore. Ribbed papillae were observed on the ventral body surface.
The surface tension of blood assessed in a group of 71 healthy subjects (24 men and 47 women) by the drop method at a temperature of 22 °C was 55.89 . 10~3 N.m-1, S.D. = 3.57 . 10~3 N.m-1. It did not correlate with age or sex of the examined subjects nor with any of the following variables: red cell sedimentation rate, blood haemoglobin levels, number of erythrocytes, total serum cholesterol, total serum triacylglycerols, creatinine blood levels, ALT and AST activity. The surface tension of blood and other body fluids can play an important part not only in the genesis and development of decompression sickness but also in other processes in the organism.