The development of knowledge on geodynamic processes is one of the most important issues in the Earth’s science. Over decades, geodetic techniques have been applied to study the geodynamics. The Global Navigation Satellite Systems (GNSS) have been reliably used for monitoring geodynamic processes. The satellite gravimetric missions such as GRACE (Gravity Recovery And Climate Experiment) and GRACE Follow-On (GRACE-FO) missions have provided numerous valuable information concerning temporal mass variations within the Earth system which can subsequently be converted to surface deformations of the Earth. The main aim of this study is to compare vertical deformations of the Earth's surface over the area of SouthEastern Poland obtained from GNSS data with the corresponding ones determined from GRACE data. The GNSS data for the period between 2008 and 2013 from 25 permanent GNSS stations operating in South-Eastern Poland and the latest release of GRACE-based Global Geopotential Models (GGMs) were used. GNSS data and GRACE-based GGMs were processed with the GAMIT/GLOBK and the IGiK‒TVGMF (Institute of Geodesy and Cartography - Temporal Variations of Gravity/Mass Functionals) packages, respectively. The results obtained indicate that monthly vertical deformations of the Earth’s surface determined using GNSS data are generally in a good agreement with the corresponding ones obtained from GRACE satellite mission data. Coefficients of correlation between these vertical deformations range from 0.60 to 0.90 and standard deviations of their differences are in the range of 2.6 - 5.7 mm., Walyeldeen Godah, Malgorzata Szelachowska, Jagat Dwipendra Ray and Jan Krynski., and Obsahuje bibliografii
Since October 2011, the Russian GLObal NAvigation Satellite System (GLONASS) has been revitalized and is now fully operational with 24 satellites in orbit. It is critical to assess the benefits and problems of using GLONASS observations (i.e. GLONASS-only or combined Global Positioning System (GPS) and GLONASS) for precise positioning and zenith total delay (ZTD) retrieval on a global scale using precise point positioning (PPP) technique. In this contribution, extensive evaluations are conducted with Global Navigation Satellite System (GNSS) data sets collected from 251 globally distributed stations of the International GNSS Service (IGS) network in July 2016. The stations are divided into 30 groups by antenna/radome types to investigate whether there are ante nna/radome-dependent biases in position and ZTD derived from GLONASS-only PPP. The positioning results do not show obvious antenna/radome-dependent biases except the stations with JAV_RINGANT_G3T/NONE. For these stations, the averaged biases in horizontal component, especially in the north component, can achieve as high as -9.0 mm. The standard de viation (STD) and root mean square (RMS) are used as indicators of positioning repeatability and accuracy, respectively. The averaged horizontal STD and RMS of GLONASS-only PPP are comparable to GPS-only PPP, while in vertical component, those for GLONASS-only P PP are larger. Furthermore, the STD and RMS of GPS+GLONASS combined PPP solutions are the smallest in horizontal and vertical components, indicating that adding GLONASS observations can achieve better positioning performance than GPS-only PPP. With the IGS final ZTD as reference, we find that ZTD biases and accuracy of GLONASS-only are latitude - and antenna/radome-independent. The ZTD accuracy of GLONASS-only PPP is slightly worse than that of GPS-only PPP. Compared with GPS-only PPP, the ZTD accuracy is only improved by 1.3% from 7.8 to 7.7 mm by adding GLONASS observations., Feng Zhou, Shengfeng Gu, Wen Chen and Danan Dong., and Obsahuje bibliografické odkazy
The study of the mechanical properties of frozen rock is a basic problem that humans have to face in artificial low-temperature rock engineering and cold region rock engineering. There are few literatures on the dynamic constitutive models of frozen rocks under low-temperature gradients at home and abroad. In this paper, the constitutive model of water-saturated marble under the coupling effects of uniaxial impact compressive load and low-temperature is studied by theoretical analysis and experimental verification. Based on the theory of mechanical element combination, a rock constitutive model considering strain rate effect, damage softening effect and low-temperature effect is established, and the model parameters are determined by fitting method. The dynamic stress-strain curve of water-saturated marble at -30 °Cis predicted. The predicted results are in good agreement with the experimental results and the concordance correlation coefficient is 0.984092. The relevant results of this paper can provide a theoretical reference for the excavation and protection of rock engineering under negative temperature., Junzhe Li, Guang Zhang, Mingze Liu, Shaohua Hu and Xinlong Zhou., and Obsahuje bibliografii
We estimated the common seasonal signal (annual oscillation) included in the Global Positioning System (GPS) vertical position time series by using Multichannel Singular Spectrum Analysis (MSSA). We employed time series from 24 International GNSS Service (IGS) stations located in Europe which contributed to the newest ITRF 2014 (International Terrestrial Reference Frame). The MSSA method has an advantage over the traditional modelling of seasonal signals by the Least-Squares Estimation (LSE) and Singular Spectrum Analysis (SSA) approaches because it can extract time-varying and common seasonal oscillations for stations located in the considered area. Having estimated the annual curve with LSE, we may make a misfit of 3 mm when a peak-to-peak variations of seasonal si gnals are to be estimated due to the time-variability of seasonal signal. A variance of data modelled as annual signal with SSA and MSSA differs of 3 % at average what proves that the MSSA-curves contain only time-varying and common seasonal signal and leave the station-specific part, local phenomena and power-law noise intact. In contrast to MSSA, these effects are modelled by SSA. The differences in spectral indices of power-law noise between MSSA and LSE esti mated with Maximum Likelihood Estimation (MLE) are closer to zero than the ones between SSA and LSE, which means that MSSA curves do not contain site-specific noise as much as the SSA curves do., Marta Gruszczynska, Anna Klos, Severine Rosat and Janusz Bogusz., and Obsahuje bibliografické odkazy