The oogonia and oocytes in the ovaries of Toxocara canis are joined to a cytoplasmic process called the rachis. The rachis is a muchbranched cytoplasmic mass without cell components in the germinal zone. At the end of the germinal zone and in the growth zone the cytoplasmic mass is formed into a central axial cylinder, containing small dense granules, lipid drops and glycogen. Throughout the growth zone shell granules similar to those present in the oocytes are also present in the rachis. Anterior to the opening of the ovaries into the oviduct the rachis disappears. The ovarian wall is composed of epithelial cells, adjoining the basal lamina. They are characterized by the presence of large numbers of mitochondria, especially in the germinal zone. The epithelial cells in the growth zone also contain rough endoplasmic reticulum, ribosomes and bundles of microfibrils. A dense tubular material occurs between the basal membrane of the epithelial cells and the basal lamina as well as in the wall intercellular spaces in the ovarian growth zone. Multivesicular labyrinthlike formations can also be observed in the epithelial intercellular spaces in the central portion of the T. canis ovary.
The fine structure of the oviduct, oviduct-uterine junction and uterus of the nematode Toxocara canis (Werner, 1782) is described. Columnar-type epithelioid cells with numerous microvilli at the apical membrane border the oviduct lumen. Many electron dense secretory products are present in these cells. The cells lining the oviduct-uterine junction have no microvilli. They are coated with an electron-dense layer and contain numerous membrane-bound dense material containing bodies. Externally, the cells are surrounded by a basal lamina and muscle cells. The epithelial cells lining the greater part of the paired uteri appear to be rather flat. The oocytes inside the oviduct are covered with a dense thick plasma membrane and contain lipid droplets, dense granules and glycogen. The morphology of the oocytes before the fertilization inside the oviduct-uterine junction resembles that of the oocyte in the oviduct. After the fertilization the egg shell formation takes place. The egg shell of T.canis is composed of four layers: uterine, vitelline, middle chitinous and inner layer. The differences between the fine structure of the egg shell of T. canis and other related nematodes are discussed.
The aim of the present work was to determine whether Dermacentor reticulatus (Fabricius), tick species common in eastern Poland could be infected with Toxoplasma gondii (Nicolle et Manceaux, 1908). A total of 664 unfed D. reticulatus ticks were collected from six localities of Lublin province (eastern Poland) within the framework of study for the presence of bacterial, viral and parasitological infections, with use of PCR and confirmed by sequencing analysis. The prevalence of T. gondii DNA of B1 gene in the total examined D. reticulatus ticks was 3.2%. The infection varies greatly depending on the locality of tick collection (0-16.7%). Preliminary identification of clonal type (I or II/III) by Restriction Fragments Length Polymorphism PCR (RFLP-PCR) with use B1 gene showed that all isolates of T. gondii belonged to type I. RFLP analysis using genetic markers SAG1, 5'-SAG2, 3'-SAG2, SAG3, and GRA6 on B1-positive samples showed that only a single isolate proved to be type I with all five markers, another type was classified to type I according to four markers, while another five isolates had only type I alleles at GRA6, which cannot be regarded as type I confirmation. It must be pointed out that the used DNA isolation method by boiling with ammonium hydroxide enables to receive the total DNA from ticks, but may be not quite suitable for genotyping. In conclusion, this study indicates that besides Ixodes ricinus (Linnaeus), also D. reticulatus should be considered as a potential vector of T. gondii. The presumption of tick-borne transmission as an alternative pathway of disease spreading could well explain the high prevalence of toxoplasmosis among the herbivorous mammals and birds. However, this hypothesis needs verification by further experimental and ecological studies., Angelina Wójcik-Fatla, Jacek Sroka, Violetta Zając, Anna Sawczyn, Ewa Cisak, Jacek Dutkiewicz., and Obsahuje bibliografii
The apicomplexan Toxoplasma gondii (Nicolle et Manceaux, 1908) secretes a group of serine/threonine kinases from rhoptries, which play vital roles in boosting intracellular infection. Toxoplasma gondii rhoptry organelle protein 17 (ROP17) is one of these important kinase proteins. Nevertheless, its function remains unclear. Here, we showed that ROP17 induced autophagy in vitro and in vivo. The autophagy of small intestine tissues of T. gondii tachyzoite (RH strain)-infected mice was detected by the immunohistochemistry staining of LC3B, Beclin 1 and P62. ROP17 overexpression augmented starvation-induced autophagy in HEK 293T cells as measured by MDC staining, transmission electron microscopy (TEM), fluorescence microscopy and Western blot analysis. Moreover, the interaction of ROP17 and Bcl-2 was confirmed using co-immunoprecipitation analysis, and the data demonstrated that ROP17 had an autophagic role dependent on the Beclin 1-Bcl-2 pathway, which was also revealed in an in vivo model through immunohistochemical staining. Pearson coefficient analysis showed that there existed strong positive correlations between the expression of ROP17 and LC3B, Beclin 1 and phosphorylation of Bcl-2, while strong negative correlations between the expression of ROP17 and p62 and Bcl-2. Collectively, our findings indicate that ROP17 plays a pivotal role in maintaining T. gondii proliferation in host cells via the promotion of autophagy-dependent survival.
Screening and identification of protective antigens are essential for the prevention of infections with Toxoplasma gondii (Nicolle et Manceaux, 1908). In our previous study, T. gondii ribosomal-ubiquitin protein L40 (TgRPL40) was identified as a circulating antigen. However, the function and protective value of TgRPL40 was unknown. In the current study, recombinant TgRPL40 was expressed in Escherichia coli BL21 and antibody was prepared. Western blotting analysis indicated that TgRPL40 was present in circulating antigens and excretory/secretary antigens (ESA). Immunofluorescence and immunoelectron microscopy analysis revealed that TgRPL40 protein is widely distributed in the tachyzoites. Immunisation with recombinant TgRPL40 prolonged the survival of mice infected with tachyzoites. Quantitative real-time polymerase chain reaction analysis showed that immunisation with recombinant TgRPL40 reduced the parasite burden in blood, liver, spleen and brain of mice infected with tachyzoites. These observations indicate that TgRPL40 is a circulating antigen and is an effector of immune protection against acute T. gondii infection.