The functional response of Aenasius bambawalei Hayat (Hymenoptera: Encyrtidae) to different population densities of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) was investigated under laboratory conditions of 65 ± 5% R.H., a photoperiod of 14L : 10D and at temperatures of 25, 30 and 35 ± 1°C. Two, 4, 6, 8, 16, 32 and 64 third instar nymphs of P. solenopsis were exposed to newly emerged mated female parasitoids for 24 h. The parasitoid exhibited a type II functional response at all temperatures. The searching efficiencies (a) and handling times (Th) were 0.1818 h-1 and 5.0012 h at 25°C, 0.1382 h-1 and 3.2807 h at 30°C, and 0.2097 h-1 and 2.3635 h at 35°C, respectively. The maximum attack rates (T/Th) were 4.8, 7.3 and 10.2 nymphs at 25, 30 and 35°C, respectively. This indicates that A. bambawalei is more likely to be an effective biological control agent of P. solenopsis in warm seasons., Razieh Joodaki, Nooshin Zandi-Sohani, Sara Zarghami, Fatemeh Yarahmadi., and Obsahuje bibliografii
1_Insects feeding on the foliage of oak were studied on a mountain where species of Mediterranean deciduous and evergreen oak coexist. There were 58 insect species (54 Lepidoptera, 1 Coleopteran and 3 Hymenoptera) belonging to twenty families in the assemblage feeding on eight species of Quercus, two of which are introduced from nearby regions. The overlap in occurrence in time and of feeding niches of the insects feeding on the foliage of the different species of oak was determined using the: (a) Poole-Rathcke method, which tests phenological overlap and (b) Petraitis method, which tests niche overlap. This indicated that insect families partition seasonal time in a random and the entire assemblage in a regular way. All groups of insects partitioned season randomly except for the pairs of monophagous-oligophagous and Palearctic-Eurosiberian species, which partition season regularly. Oak folivorous insects correctly perceive the three subgenera of oaks with the exception of the planted Q. robur pedunculiflora. The folivorous insects recorded on the Mediterranean evergreen oaks (subgenus Sclerophyllodrys) differ from those on the other two subgenera (Quercus and Cerris) and co-occurring deciduous trees. The hypothesis of complete general overlap is rejected for groups based on feeding specialization, zoogeographical categories and taxonomic families. The same was the case when the entire insect assemblage was considered. The percentage of specific niche overlap of the folivorous insects is low and greatest among the monophagous species (13.8%) and those with a Mediterranean distribution (15.4%). Voltinism is not very important for this assemblage and only seven species are bivoltine of which four fed on a different species of oak in the second generation., 2_The overall conclusion is that the co-occurrence in space of these species is possible because they occur regularly at different times during the season whereas that of insect groups based on zoogeographical, taxonomic or feeding specialization are randomly dispersed in time., Maria Kalapanida, Panos V. Petrakis., and Obsahuje seznam literatury
The tendency for self-superparasitism and it's effects on the quality of the parasitoid Ooencyrtus pityocampae (Mercet) (Hymenoptera: Encyrtidae) in parasitizing a new laboratory host, Philosamia ricini (Danovan) (Lepidoptera: Saturniidae), were investigated. In this study, female parasitoids of various ages (1-, 3- and 5-day-old) were tested individually. Parasitoids were provided with 1-day-old P. ricini eggs at ratios of 5, 10, 20, 30 and 40 host eggs per wasp. The tendency to superparasitize was dependent on the female's age and host density. Five-day-old females showed a strong tendency to superparasitize at low host densities. The development time of wasps in superparasitized eggs was longer than that of wasps in singly parasitized eggs. The size and longevity of adult parasitoids decreased significantly with superparasitism. This work contributes to the development of an efficient mass rearing and laboratory rearing of the parasitoid O. pityocampae using a new host., Hilal Tunca, Maurane Buradino, Etty-Ambre Colombel, Elisabeth Tabone., and Obsahuje bibliografii
This paper presents biological notes on two species of Orthoptera: Tettigoniidae that emerged from old spongy-woody galls of Dryocosmus kuriphilus Yasumatsu, 1951 collected in Sicily (Italy) in April 2015: Leptophyes sicula Kleukers, Odé et Fontana, 2010 (Phaneropterinae) and Cyrtaspis scutata (Charpentier, 1825) (Meconematinae). Between the end of April and the first few days of May a total of 30 neanids emerged from the galls, were reared and their life-cycle recorded. While L. sicula laid eggs in groups, C. scutata laid single eggs inside the galls; both species in a few years have adapted to exploiting this new shelter for egg laying. No interaction with the gall inducing insect was noted., Giuliano Cerasa, Bruno Massa., and Obsahuje bibliografii
Honey bees are not only important for honey production but also as pollinators of wild and cultivated plants. The Eastern honeybee (Apis cerana) is more resistant to several pathogens than the Western honeybee (Apis mellifera), and the genomes of two strains of the nominotypical subspecies, A. cerana cerana, northern (Korea) and southern (China) strains, have been sequenced. Apis cerana japonica, another subspecies of A. cerana, shows many specific features (e.g. mildness, low honey production and frequently absconds) and it is important to study the molecular biological and genetic aspects of these features. To accelerate the genetic research on A. cerana japonica, we sequenced the genome of this subspecies. The draft genome sequence of A. cerana japonica presented here is of high quality in terms of basic genome status (e.g. N50 is 180 kbp, total length is 211 Mbp, and largest contig length is 1.31 Mbp) and BUSCO results. The gene set of A. cerana japonica was predicted using AUGUSTUS software and the set of genes was annotated using Blastp and InterProScan, and GO terms were added to each gene. The number of genes is higher than in A. mellifera and in the two strains of A. cerana cerana sequenced previously. A small number of transposable elements and repetitive regions were found in A. cerana japonica, which are also in the genomes of A. mellifera and the northern and southern strains of A. cerana cerana. Apis cerana is resistant to several pathogens that seriously damage A. mellifera. We searched for 41 orthologs related to the IMD and Toll pathways, which have key roles in the immune reaction to invading pathogens. Some orthologs were not identified in the genome of the northern strain of A. cerana cerana. This indicates that the Toll and IMD pathways function in the same way as in A. mellifera and Drosophila melanogaster., Kakeru Yokoi, Hironobu Uchiyama, Takeshi Wakamiya, Mikio Yoshiyama, Jun-Ichi Takahashi, Tetsuro Nomura, Tsutomu Furukawa, Shunsuke Yajima, Kiyoshi Kimura., and Obsahuje bibliografii
a1_This study describes the parasitoid species complex associated with seven closely related species of sexual (Siederia rupicollella, S. listerella, Dahlica lazuri, D. charlottae and D. lichenella) and parthenogenetic (Dahlica fennicella and D. triquetrella) Naryciinae (Lepidoptera: Psychidae) in Central Finland. A thorough ecological analysis of all the species of parasitoids recorded was combined with analyses of molecular data. Mitochondrial and nuclear DNA data were obtained from all the species in order to (1) detect cryptic species associated with host specialization, (2) assign undescribed males to females, and (3) verify the morphological identification of closely related species. A DNA barcoding technique was employed to identify host species from parasitized larval remains. By sampling more than 10,000 host larvae, of which 25.7% were parasitized, nine parasitoid species were identified morphologically, including both koinobionts (Ichneumonidae: Diadegma incompletum, Macrus parvulus, Trachyarus borealis, T. solyanikovi, T. fuscipes, T. brevipennis and Braconidae: Meteorus affinis) and idiobionts (Ichneumonidae: Orthizema flavicorne, Gelis fuscicornis). Ecological characteristics such as time and mode of host attack, time of emergence and level of specialization differed widely. The results show that differences in parasitoid biology need to be taken into account when studying differences in percentage parasitism of sexual and parthenogenetic Naryciinae. The molecular data revealed that one parasitoid species M. parvulus may consist of two cryptic forms associated with the sexual and parthenogenetic hosts, respectively. The data further establishes that T. brevipennis and some T. fuscipes are in fact morphotypes of one species. The large variation in mitochondrial DNA within species and its inconsistency with nuclear DNA demonstrate that current species and genus delimitation is inadequate in the, a2_Trachyarus species group. Our study shows that it is essential to use DNA barcoding methods when investigating host-parasitoid complexes., and Jelmer A. Elzinga, Kees Zwakhals, Johanna Mappes, Alessandro Grapputo.
From 2000 to 2006 a total of 52 CPUE samples of spider wasps (Hymenoptera: Pompilidae) were collected in the mosaic landscape of the Kampinos National Park (Poland), which is a UNESCO Biosphere Reserve. The hypothesis tested was that both pompilid species richness and abundance is positively associated with spatial heterogeneity. The patterns in spider wasp assemblages were identified using a Kohonen artificial neural network (i.e., self-organizing map). The highest numbers and greatest species richness of pompilids were recorded at sites in open habitats, especially those located on dry soils that are the preferred nesting sites of ground nesting (endogeic) spider wasps. However, pompilid distribution depended not only on the character of a sampling site, but also its location in a mosaic of habitats. The highest values of pompilid abundance and species richness were also recorded at sites surrounded by several different habitats. Both parameters were lower at sites in more homogenous areas, where there were fewer habitats within the flight ranges of spider wasps. A group of three “cultural species” (Agenioideus cinctellus, A. sericeus and Auplopus carbonarius) was identified that is significantly associated with wooden buildings. The results of this study are thus consistent with the concept that habitat heterogeneity enhances faunal diversity, as each type of habitat, including anthropogenic ones, potentially contributes to a wider range of available resources., Kartarzyna Szczepko, Andrzej Kruk, Maciej Bartos., and Obsahuje seznam literatury
Two closely related parasitoid wasp species with different host specificities were used for experimental studies on the biology of host finding, a crucial element of parasitoid life history: The habitat and host specialist Nasonia vitripennis and the habitat and host generalist Dibrachys microgastri (Chalcidoidea: Pteromalidae). The host finding parameters tested included reaction to olfactory cues, aspects of locomotor activity, ability to locate hidden hosts and day-night-activity. The results revealed distinct interspecific differences that match the respective host and habitat ranges of the two species. In N. vitripennis host finding is dominated by olfactory reaction to hosts and host habitat, i.e., fly puparia and birds' nests. In D. microgastri olfactory cues have only a minor role. Its host finding is characterized by rapid searching at random. Both species are able to locate hidden hosts. Although still incomplete, these insights into host finding by two parasitoid species with different life history strategies indicate they can be characterized by specific combinations of behavioural host finding features. and Ralph S. Peters.
Wolbachia is a maternally transmitted intracellular symbiont which causes reproductive distortions in the arthropods it infects. In recent years there has been an increasing interest in using Wolbachia as a potential tool for biological control by genetic manipulation of insect pests. In the present paper we report Wolbachia infection in several Trissolcus wasps (Hymenoptera: Scelionidae) which are important egg parasitoids of the sunn pest, Eurygaster integriceps Puton (Heteroptera: Scutellaridae). We used DNA sequence data for a gene encoding a surface protein of Wolbachia (wsp) not only to confirm Wolbachia infection but also to discriminate Wolbachia strains. Phylogenetic analyses indicated that Wolbachia strains in Trissolcus species were closely related to one another and belonged to supergroup B. Determination of the infection status of various populations, the possible role of Wolbachia in causing the incompatibility and knowledge of the reproductive compatibility of Trissolcus populations is important for the success of parasitoids in sunn pest management., Nurper Guz ... [et al.]., and Obsahuje seznam literatury