Long-term geotechnical monitoring of crack and fissure movements in slope deformations, historical buildings, as well as underground objects in Slovakia, provided results that bear evidence of movement trends, as well as of present tectonic unrest. The results were subject to an analysis regarding anomalies in movements that would verify activity of a specific geodynamic process. Such a process was detected recently in the Bohemian Massif and evidenced even in other European countries, north as well as south of the Alps. The process began by a tectonic pressure pulse and followed by a phase of increased geotectonic activity. The search for signs identifying this process on the Slovak territory which belongs to a different geological unit than the Bohemian Massif was successful. This is further evidence that the process in question is of a very deep foundation. The investigations proved successful long-term outdoor operation of TM71 crack gauges working on the principal of mechanical interference between optical grids. A thirty year long record was even reached. A useful function of the gauge which allows for supplementary data about angular deviations in faults has been found useful in the analysis. The data indicate affinity of the process to a large global disturbance in the Earth crust., Ľubomír Petro, Blahoslav Košťák, Josef Stemberk and Ján Vlčko., and Obsahuje bibliografii
Metamorphic phenomena formed geological and tectonical structure of the Śnieżnik Kłodzki Massif, Kłodzko Valley, SW Poland. In 1992 twenty seven points of local geodynamical network were founded for determination the Śnieżnik Massif crust activity. Points of this network were located in Czech and Polish sides of the Massif. Researches were provided by repeated periodic satellite GPS measurements, total station, gravimetric, clinometric and crack gauges observations and precise levelling technique. Śnieżnik Massif is crossed by the section of tectonic faults zone in direction NW-SE. Several transverse faults are located near the major tectonic zone. Long term research material (data) allows to interpretation and evaluation of the object surface deformation., Olgierd Jamroz., and Obsahuje bibliografii
Geodetic geodynamic studies were conducted in the Wrocław Plain, situated in the SE part of the Central European Subsidence Zone (CESZ). The boundaries of this plain coincide with the outline of the rhomboidal Cainozoic Wrocław Basin. This area has been chosen for detailed examination taking into account the results of previous geodynamic research, pointing to constant subsidence of the Wrocław region. Analysis of drainage network and changeable thicknesses of the Neogene an d Quaternary strata also indicates weak, although stable subsidence of the central part of the Silesian Lowland and relative, small-scale uplift of the Fore-Sudetic region situated in thes outh and an area placed north of the Odra River valley. The studies consisted in measuring elevation changes of benchmarks along lines of precise levelling during 1956-1999 period, establishing a GPS network points, as well as measuring and processing of GPS data acquired during 2008-2010 time span. Displacements of benchmarks of precise levelling lines point to block-type mobility of structures located in the SE part of the CESZ, while GPS measurements indicate deformations related to bending of the Cainozoic sedimentary cover underlain by metamorphic bedrock and Permo-Mesozoic strata. Three years of observations enable us to distinguish two zones typified by compressive deformations being coincident with subsiding areas. One of these zones strikes NW-SE and marks the CESZ axis, the second one, oriented NNW-SSE, fo llows the orientation of a deeply buried Carboniferous-Permian tectonic graben (the Eastern Fore-Sudetic Basin) and a much shallower trough filled with Cretaceous strata in the Opole region. Uplift typifies the Fore-Sudetic Block as well as areas situated close to Opole town and north of the Odra River valley., Piotr Grzempowski, Janusz Badura, Stefan Cacoń, Jan Kapłon, Witold Rohm and Bogusław Przybylski., and Obsahuje bibliografické odkazy
Geological structure, including main faults and faults zones, of the Góry Stołowe National Park originated in Neogene. Displacements on faults in the Poříčí-Hronov and the Czerwona Woda fault zones have been revealed at present times. A network of 11 research points was established to register this process and phenomena associated with it. The first measurement, consisting of GPS and gravimetric observations, was performed in 2008. It has been complemented with relative measurements of the faults in selected places where crack-gauges have been installed. Accuracies of the first GPS measurements indicate ability to detect horizontal movements with accuracy of several millimetres., Stefan Cacoń, Jurand Wojewoda and Jan Kapłon., and Obsahuje bibliografii
The paper presents local changes of plumb line direction in the area of Inowrocław, central Poland. The changes were determined by geodetic (GPS, leveling) and gravimetric surveys. The presented conclusions point out that increasing resolution of a precise quasigeoid model in areas with variable distribution of rock mass is necessary. The final results of the paper are suggestions concerning a practical approach applied to obtain proper values of plumb line deflections that can be useful for further detail research for making more precise local models of the quasigeoid., Zbigniew Szczerbowski, Piotr Banasik and Jacek Kudrys., and Obsahuje bibliografii
In the contribution geological structure and geophysical data along the northern part of the Diendorf-Čebín tectonic zone (DCTZ) is analyzed in relation to the position of the measured GPS test areas and precise levelling profiles. For this purposes the former geophysical data have been reambulated and analyzed, too. Revision of geological knowledge and sources has been done in places of the proposed polygons. The results of reinterpretation of the Grav/Mag data and selected seismic reflection profiles suggest new possibilities and variety of structural interpretations of this tectonic zone. It is evident that the whole tectonic system has undergone complicated tectonic development during the Paleogene and Neogene. Therefore the recent mapping and analyses by GPS and precise levelling have to be realized in places where the geological structural ambiguity has to be eliminated., Lubomil Pospíšil, Otakar Švábenský, Josef Weigel and Michal Witiska., and Obsahuje bibliografii
The past five centuries of the Idrija Mercury Mine’s operation have had consequences on the environment, which have directly influenced the deformations developing in the wider exploration area. During the many years of mercury ore exploitation, the cross-stope mining method with backfilling from bottom to top was used. This has strongly transformed the stress-strain field in the surrounding rocks and caused long-term deformation processes that are still in progress. This is because the deformations have a small time gradient and thus bigger breaks or faster sliding terrain above old mine workings are not expected. The surface movements are bigger in the area built of Permian-Carboniferous, low-bearing-capacity rocks, which in the past was destroyed by major tectonic movements in the rock structure. Mine closure works, which included grouting and hardening of destroyed underground areas, as well as filling parts of the mine and backfilling empty spaces (i.e., mine roadways, blind shafts), are finished. The efficiency of mine shutdown works is constantly being verified by means of geotechnical and other measurements and observations, and will continue in the future., Jakob Likar., and Obsahuje bibliografii
The research is focused on the feasibility analysis of a numerical model describing the field of strains generated by mining-induced subsidence caused by a deep underground coal extraction, which may contribute to the formation of Earth fissures. The finite elements method and Knothe’s theory were used in the research. The geomechanical modeling was applied for defining zones of strains and maximum horizontal deformations of the terrain. Knothe’s theory was employed for defining boundary conditions of the geomechanical model. The parameters of the empirical and geomechanical models were scaled out on the basis of geodetic surveys in the mining area. The results of geomechanical modeling were compared with the geodetic surveys to select the best model. The presented research confirmed high congruence between the results of modeling with the finite elements method and observations of vertical movements on the surface. The results of modeling also confirmed the assumed highest stress in areas where earth fissures were observed. The proposed solution may be a new research tool applicable to areas where earth fissures potentially occur. and Malinowska Agnieszka A., Misa Rafał, Tajduś Krzysztof.
We studied the geophysical, physical, and geomechanical parameters of the Podlesí granites in the western part of the Krušné hory Mts., near the village of Potůčky. The granites represent a fractionated intrusion within the Nejdecký Massif. In total, the studied borehole is about 300 m deep. The samples were collected at depths of between 35 and 105 metres. Seismic P-wave and S-wave velocities were measured using ultrasonic scanning. The samples were water-saturated, unsaturated, and dried. The ultrasonic scanning system consisted of four piezoelectric sensors and a digital oscilloscope recorder. The wave frequency was 1 MHz. P-wave velocities range from 4400 m.s-1 to 6500 m.s-1 while S-wave velocities range from 2800 m.s-1 to 3800 m.s-1. These data were used to calculate dynamic Young’s modulus, dynamic shear modulus, and Poisson’s ratio. The deformational characteristics of the rock were specified from experimental loading of the sample with uniaxial strain. The shear and longitudinal deformation of each sample was measured using a resistive strain gauge fixed directly on the sample. Intermittent loading of the samples proceeded using a uniform gradient of axial stress of 1 MPa.s-1. The samples were subjected to five separate loads. During the tests, following parameters were recorded: stress, longitudinal deformation, and shear deformation. These data were used to calculate static Young’s and shear modulus, and Poisson’s ratio., Lucie Nováková, Karel Sosna, Milan Brož, Jan Najser and Petr Novák., and Obsahuje bibliografii