a1_The question was addressed of how nitric oxide synthase (NO synthase) inhibition-induced hypertension in rat parents would affect the cardiovascular system in their offsprings. Two experimental groups were set up: Group I - offsprings of parents who had both been administered NO synthase inhibitor L-nitro-arginine methyl ester (L-NAME 40 mg/kg/day) for 5 weeks, the treatment of dams continued till week 12. Group II - offsprings fed by dams administered L-NAME after delivery only for a period of 4 weeks. Control age-matched offsprings formed the third group. Blood pressure and heart rate in parents and in 3-week-old offsprings were determined noninvasively. In the offsprings, body and heart weight were measured and the heart/body weight ratio (HW/BW) was calculated. The NO synthase activity, and also ornithine decarboxylase activity as a marker of polyamine production, were determined in the heart. The acetylcholine-induced relaxation of aortic rings was also followed. A marked blood pressure increase with a tendency to a decreased heart rate was found in the offsprings of Group I. A significant decrease in heart weight and body weight with a decreased HW/BW ratio indicated cardiac hypotrophy that contrasted with the decrease in NO synthase activity and increase in ornithine decarboxylase activity in the heart. Noteworthy was also the finding of completely preserved relaxation of the aorta to acetylcholine. Offsprings of Group II were similarly characterized by significantly higher blood pressure, a tendency to decreased heart rate, a decrease in heart weight, but not of the HW/BW ratio. The contrasting findings of heart weight decrease on the one hand and NO synthase activity decrease and ornithine decarboxylase increase on the other, were also found in this group. Full relaxation of the aorta to acetylcholine was preserved., a2_It can be concluded that remarkable alterations in the cardiovascular system were found in offsprings of hypertensive NO compromised parents., M. Gerová, I. Bernátová, J. Török, M. Juráni., and Obsahuje bibliografii
The aim of this study was to assess the molecular basis of renal Na,K-ATPase disturbances in response to NO-deficient hypertension induced in rats by NO-synthase inhibition with 40 mg/kg/day NG-nitro-L-arginine methyl ester (L-NAME) for four weeks. After 4-week administration of L-NAME, the systolic blood pressure (SBP) increased by 30 %. Three weeks after terminating the treatment, SBP recovered to control value. When activating the Na,K-ATPase with its substrate ATP, a 36 % increase in Km and 29 % decrease in Vmax values were observed in NO-deficient rats. During activation with Na+, the Vmax was decreased by 20 % and the KNa was increased by 111 %, indicating a profound decrease in the affinity of the Na+-binding site in NO-deficient rats. After spontaneous recovery from hypertension, the Vmax remained at the level as in hypertension for both types of enzyme activation. However, in the presence of lower concentrations of substrate which are of physiological relevance an improvement of the enzyme activity was observed as documented by return of Km for ATP to control value. The KNa value for Na+ was decreased by 27 % as compared to hypertension, but still exceeded the corresponding value in the control group by 55 % thus resulting in a partial restoration of Na+ affinity of Na,K-ATPase which was depressed as a consequence of NO-dependent hypertension., N. Vrbjar, V. Javorková, O. Pecháňová., and Obsahuje bibliografii
The present investigation was directed to study the effect of in vitro or ex vivo NO donors, sodium nitroprusside and molsidomine, using isolated sliced adipose tissue or in the form of immobilized and perfused adipocytes on the basal and isoprenaline-stimulated lipolysis. The results demonstrated that 1) in vitro application of sodium nitroprusside to perfused adipocytes or molsidomine to sliced adipose tissues affects isoprenaline-induced lipolysis in two ways, an increase in lipolysis at low isoprenaline concentrations (which means the sensitization of adipose tissues to adrenergic effect by NO) and decreased adrenergic agonist-stimulated lipolysis at higher concentration of isoprenaline (a decrease in the maximum lipolytic effect of isoprenaline), 2) low concentrations of molsidomine alone induced lipolysis from adipose tissue which attained more than 60 % of that by isoprenaline (pD2 value for molsidomine = 11.2, while pD2 for isoprenaline = 8.17) while sodium nitroprusside did not affect the basal lipolysis significantly, 3) in vivo administration of molsidomine for 2 days reduced the maximum lipolytic effect of isoprenaline and (only non-significantly) increased the sensitivity to low doses of isoprenaline. In conclusion the present data demonstrate that NO plays an important role in adrenergic lipolysis in adipose tissues and further investigations are needed to unravel the exact role of NO in lipolysis., D. Lincová, D. Mišeková, E. Kmoníčková, N. Canová, H. Farghali., and Obsahuje bibliografii
We reported previously that the nitric oxide synthesis inhibitor Nv-nitro-L-arginine methyl ester (L-NAME) decreases cardiac output. Several studies have shown that inhibition of nitric oxide synthesis decreases the heart rate. In the present study, we investigated the effect of a single bolus administration of L-NAME on blood pressure and heart rate monitored for one hour in anesthetized rats and the influence of vagotomy and b1-receptor blocker metoprolol on the L-NAME induced bradycardia. After L-NAME treatment, the blood pressure rose immediately after the injection of the drug (peak response in the third minute: +24 %, p<0.001) and fell to the control level in the 20th minute. The heart rate decreased immediately after L-NAME administration, the lowest value being reached in the 10th minute (-14 %, p<0.001). However, bradycardia was sustained even after the blood pressure had returned to the control level. Bilateral vagotomy failed to influence the negative chronotropic effect of L-NAME, but bradycardia was completely abolished by metoprolol pretreatment. We concluded that the bradycardia evoked by L-NAME is mainly due to the withdrawal of sympathetic tone upon the heart rate. However, the cause of sustained bradycardia after normalization of blood pressure cannot be elucidated., J. Vág, C. Hably, J. Bartha., and Obsahuje bibliografii
It was previously shown that 4 hours´ lasting inhibition of nitric oxide synthesis by administration of an L-arginine analogue, the NG-nitro-L-arginine methyl ester (L-NAME) changed the affinity of the Na-binding site of Na,K-ATPase thus resulting in elevation of enzyme activity especially at higher concentrations of sodium. Using the same experimental model, we focused our attention in the present study to the question of binding of ATP to the enzyme molecule in the left ventricle (LV), ventricular septum (S) and the right ventricle (RV) of the dog heart. Activation of the enzyme by increasing concentrations of ATP revealed a significant increase of the Vmax only in septum (by 38 %). The KM increased significantly in septum (by 40 %) and in left ventricle (by 56 %) indicating an altered sensitivity of the ATP-binding site of Na,K-ATPase in the hearts of NO-deficient animals. The alterations of Na,K-ATPase in its ability to bind and hydrolyze ATP are localized to the tissue surrounding the cavity of the left ventricle., N. Vrbjar, M. Strnisková, O. Pecháňová, M. Gerová., and Obsahuje bibliografii