The present study was designed to investigate the acute relaxing effect of phytoestrogen resveratrol on isolated porcine coronary arteries and to determine the mechanisms underlying its vasodilatation. Rings of porcine coronary arteries were suspended in organ baths containing Krebs-Henseleit solution, and then isometric tension was measured. Resveratrol concentration-dependently relaxed arterial rings precontracted with 30 mM KCl. The IC50 value of resveratrol was 38.67±3.21 μM. Incubation with Nω-L-nitro-arginine (L-NNA), endothelium removal or the presence of a potent inhibitor of protein tyrosine phosphatase sodium orthovanadate partly decreased the relaxation induced by resveratrol. However, the relaxation induced by resveratrol was unaffected by the estrogen receptor antagonist tamoxifen, the inhibitor of prostanoid synthesis indomethacin, the antagonist of β-adrenoceptors propranolol or the protein synthesis inhibitor, cycloheximide. In addition, resveratrol significantly decreased the contractile responses of
5-HT, KCl and CaCl2, and shifted their cumulative concentration-response curves to the right. These results suggest that the mechanisms of vasorelaxation induced by resveratrol are heterogeneous, two mechanisms participating partially in the relaxation of porcine coronary artery were detected in the study, one being the nitric oxide released from the endothelium, the other causing inhibition of Ca2+ influx, but estrogen receptors were not involved in resveratrol-induced relaxation.
This review summarizes our findings concerning the altered balance of vasoactive systems (namely sympathetic nervous system and nitric oxide) in various forms of experimental hypertension – genetic hypertension (SHR, HTG rats), salt hypertension (Dahl rats) and NO-deficient hypertension (L-NAME-treated rats). An attempt is made to define relative NO deficiency (compared to the existing level of sympathetic vasoconstriction), to describe its possible causes and to evaluate particular indicators of its extent. A special attention is paid to reactive oxygen species, their interaction with NO metabolism, cell Ca2+ handling and blood pressure regulation. Our current effort is focused on the investigation of abnormal regulation of cytosolic Ca2+ levels in smooth muscle and endothelium of hypertensive animals. Such a research should cl
arify the mechanisms by which genetic and/or environmental factors could chronically modify blood pressure level.
Red wine polyphenols have been reported to exert beneficial effects in preventing cardiovascular diseases but their molecular mechanisms of hemodynamic effects on functional cardiovascular and renal changes were studied much less. The review is focused on in vitro as well as in
vivo effects of red wine extract containing polyphenolic compounds
(Provinols™) on cardiovascular systems and kidney in relation to the molecular and biochemical mechanisms of these compounds. This review provides the evidence that Provinols™ is able to produce ex vivo
endothelium-dependent relaxation as a result of enhanced NO synthesis. Administration of Provinols™ partially prevents the development of hypertension during NO deficiency and accelerates the decrease of blood pressure in already established hypertension. The effects of Provinols™ include prevention and/or attenuation of myocardial fibrosis, reduction of aortic wall thickening and improvement of vascular functions. These functional and structural alterations are associated with significant augmentation of NO production, seen as the increase of NO synthase activity and eNOS protein expression. Moreover, it has been documented that Provinols™ decreased the oxidative stress within the cardiovascular system and kidney.
Gasotransmitters represent a subfamily of the endogenous gaseous signaling molecules that include nitric oxide (NO), carbon monoxide
(CO), and hydrogen sulphide (H2S). These particular gases share many common features in their production and function, but they fulfill their physiological tasks in unique ways that differ from those of classical signaling molecules found in tissues and organs. These gasotransmitters may antagonize or potentiate each other’s cellular effects at the level of their production, their downstream molecular targets and their direct
interactions. All three gasotransmitters induce vasodilatation, inhibit apoptosis directly or by increasing the expression of anti-apoptotic genes, and activate antioxidants while inhibiting inflammatory actions. NO and CO may concomitantly participate in vasorelaxation, anti-inflammation and angiogenesis. NO and H2S collaborate in the regulation of vascular tone. Finally, H2S may upregulate the heme oxygenase/carbon monoxide
(HO/CO) pathway during hypoxic conditions. All three gasotransmitters are produced by specific enzymes in different cell types that include cardiomyocytes, endothelial cells and smooth muscle cells. As translational research on gasotransmitters has exploded over the past years, drugs that alter the production/levels of the gasotransmitters themselves or
modulate their signaling pathways are now being developed. This review is focused on the cardiovascular effects of NO, CO, and H2S. Moreover, their donors as drug targeting the cardiovascular system are briefly described.
a1_The question was addressed of how nitric oxide synthase (NO synthase) inhibition-induced hypertension in rat parents would affect the cardiovascular system in their offsprings. Two experimental groups were set up: Group I - offsprings of parents who had both been administered NO synthase inhibitor L-nitro-arginine methyl ester (L-NAME 40 mg/kg/day) for 5 weeks, the treatment of dams continued till week 12. Group II - offsprings fed by dams administered L-NAME after delivery only for a period of 4 weeks. Control age-matched offsprings formed the third group. Blood pressure and heart rate in parents and in 3-week-old offsprings were determined noninvasively. In the offsprings, body and heart weight were measured and the heart/body weight ratio (HW/BW) was calculated. The NO synthase activity, and also ornithine decarboxylase activity as a marker of polyamine production, were determined in the heart. The acetylcholine-induced relaxation of aortic rings was also followed. A marked blood pressure increase with a tendency to a decreased heart rate was found in the offsprings of Group I. A significant decrease in heart weight and body weight with a decreased HW/BW ratio indicated cardiac hypotrophy that contrasted with the decrease in NO synthase activity and increase in ornithine decarboxylase activity in the heart. Noteworthy was also the finding of completely preserved relaxation of the aorta to acetylcholine. Offsprings of Group II were similarly characterized by significantly higher blood pressure, a tendency to decreased heart rate, a decrease in heart weight, but not of the HW/BW ratio. The contrasting findings of heart weight decrease on the one hand and NO synthase activity decrease and ornithine decarboxylase increase on the other, were also found in this group. Full relaxation of the aorta to acetylcholine was preserved., a2_It can be concluded that remarkable alterations in the cardiovascular system were found in offsprings of hypertensive NO compromised parents., M. Gerová, I. Bernátová, J. Török, M. Juráni., and Obsahuje bibliografii
The aim of this study was to assess the molecular basis of renal Na,K-ATPase disturbances in response to NO-deficient hypertension induced in rats by NO-synthase inhibition with 40 mg/kg/day NG-nitro-L-arginine methyl ester (L-NAME) for four weeks. After 4-week administration of L-NAME, the systolic blood pressure (SBP) increased by 30 %. Three weeks after terminating the treatment, SBP recovered to control value. When activating the Na,K-ATPase with its substrate ATP, a 36 % increase in Km and 29 % decrease in Vmax values were observed in NO-deficient rats. During activation with Na+, the Vmax was decreased by 20 % and the KNa was increased by 111 %, indicating a profound decrease in the affinity of the Na+-binding site in NO-deficient rats. After spontaneous recovery from hypertension, the Vmax remained at the level as in hypertension for both types of enzyme activation. However, in the presence of lower concentrations of substrate which are of physiological relevance an improvement of the enzyme activity was observed as documented by return of Km for ATP to control value. The KNa value for Na+ was decreased by 27 % as compared to hypertension, but still exceeded the corresponding value in the control group by 55 % thus resulting in a partial restoration of Na+ affinity of Na,K-ATPase which was depressed as a consequence of NO-dependent hypertension., N. Vrbjar, V. Javorková, O. Pecháňová., and Obsahuje bibliografii
Polymorphonuclear neutrophils (PMN) are thought to play a role in reperfusion injury and ischemia. These effects are partly mediated by toxic oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical) acting at the level of the endothelium. It was demonstrated recently that the superoxide anion reacts with nitric oxide (NO) and that interaction leads to the generation of highly toxic peroxynitrite. Several drugs were tested so far in order to affect PMN function. It was demonstrated that dipyridamole (2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d)-pyrimidine) can influence neutrophil function by inhibiting adenosine uptake. However, this action can not fully explain all of the observed effects of dipyridamole action on PMN metabolism. The aim of our study was to evaluate the influence of dipyridamole on nitric oxide production by activated polymorphonuclear neutrophils. Incubation of PMNs with hydroxylamine (HA) and phorbol myristate acetate (PMA) generated nitrite (36.4±4.2 nmol/h 2x106 PMN), dipyridamole at 100 μmol/l, 50 μmol/l and 10 μmol/l caused a considerable drop in nitrite production (11.8±1.8, 19.7±2.7 and 27.4±3.2 nmol/h, respectively). Neither adenosine nor the adenosine analogue could mimic the dipyridamole effect. Moreover theophylline, an adenosine inhibitor could not reverse the dipirydamole action on PMN metabolism. We also found that dipyridamole inhibited hydrogen peroxide release from neutrophils. Catalase that scavenges hydrogen peroxide also largely abolished nitric oxide release from PMN. It is evident that dipyridamole inhibits hydroxylamine-augmented nitric oxide production by activated polymorphonuclear neutrophils through an adenosine-independent mechanism.
Causes of early hypoperfusion after subarachnoid hemorrhage (SAH) include intracranial hypertension as well as vasoconstriction. The aim of the study was to assess the effect of intracerebroventricular (ICV) administration of sodium nitroprusside (SNP) on early hypoperfusion after SAH. Male Wistar rats (220-240 g) were used, SAH group received 250μ
l of fresh autologous arterial blood into the prechiasmatic cistern; sham
-operated animals received 250μl of isotonic solution. Therapeutic intervention: ICV administration of 10μg SNP; 5μl 5 % glucose (SNP vehicle) and untreated control. Brain perfusion and invasive blood pressure were monitored for 30 min during and after induction of SAH. Despite SNP caused increase of perfusion in sham-operated animals, no response was observed in half of SAH animals. The other half developed hypotension accompanied by brain hypoperfusion. There was no difference between brain perfusion in SNP-treated, glucose-treated and
untreated SAH animals during the monitored period. We did not
observe expected beneficial effect of ICV administration of SNP after SAH. Moreover, half of the SNP-treated animals developed serious hypotension which led to brain hypoperfusion. This is the important finding showing that this is not the option for early management in patient after SAH.
Deuterium-depleted water (DDW) has a lower concentration of deuterium
than occurs naturally (less than 145 ppm). While effects of DDW on cancer started to be intensively studied, the effects on cardiovascular system are completely unknown. Thus, we aimed to analyze the effects
of DDW (55±5 ppm) administration to 12-week-old normotensive Wistar
-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) treated with 15 % fructose for 6 weeks. Blood pressure (BP) and selected
biochemical parameters were measured together with determination of nitric oxide synthase (NOS) activity and iNOS and eNOS protein expressions in the left ventricle (LV) and aorta. Neither DDW nor fructose had any significant effect on BP in both strains. DDW treatment decreased total cholesterol and triglyceride levels in WKY, but it was not able to prevent increase in the same parameters elevated due to fructose treatment in SHR. Both fructose and DDW increased insulin level in WKY. Fructose did not affect NOS activity either in WKY or SHR. DDW increased NOS activity in LV of both WKY and SHR, while it
decreased NOS activity and iNOS expression in the aorta of SHR with or without fructose treatment. In conclusion, DDW treatment significantly modified biochemica l parameters in WKY together with NOS activity elevation in the heart. On the other hand, it did not affect biochemical parameters in SHR, but decreased NOS activity elevated due to iNOS upregulation in the aorta.
Melatonin, a multitasking indolamine, seems to be involved in a variety of physiological and metabolic processes via both receptor-mediated and receptor-independent mechanisms. The aim of our study was to find out whether melatonin can affectblood pressure (BP), nitric oxide synthase (NOS) activity, eNOS and nNOS protein expressions in rats with metabolic syndrome (SHR/cp). Rats were divided into four groups: 6-week-old male WKY andSHR/cp and age-matched WKY and SHR/cp treated with melatonin (10 mg/kg/day) for 3 weeks. BP was measured by tail-cuff plethysmography. NOS activity, eNOS and nNOS protein expressions were determined in the heart, aorta, brain cortex
and cerebellum. MT1 receptors were analyzed in the brain cortex
and cerebellum. In SHR/cp rats, BP was decreased after melatonin treatment. In the same group, melatonin did not affect NOS activity and eNOS protein expression in the heart and aorta, while it increased both parameters in the brain cortex and cerebellum. Interestingly, melatonin elevated MT1 protein expression in the cerebellum. Neuronal NOS protein expression was not changed within the groups. In conclusion, increased NOS activity/eNOS upregulation in particular brain regions may
contribute partially to BP decrease in SHR/cp rats after melatonin treatment. Participation of MT1 receptors in this melatonin action may be supposed.