In addition to a number of deleterious effects on cellular integrity and functions, diabetic metabolic milieu has been implicated in a rapidly growing number of alterations in signal transduction. In this review we focus on Akt kinase physiology, its alterations in diabetes mellitus (DM), and on the emerging role of this signaling system in the pathophysiology of diabetic microvascular complications. Studies focusing on Akt in diabetes suggest both decrease and increase of Akt activity in DM. Alterations of Akt activity have been found in various tissues and cells in diabetes depending on experimental and clinical contexts. There is convincing evidence suggesting defective Akt signaling in the development of insulin resistance. Similar defects, as in insulin-sensitive tissues, have been reported in endothelia of DM Type 2 models, possibly contributing to the development of endothelial dysfunction under these conditions. In contrast, Akt activity is increased in some tissues and va
scular beds affected by complications in DM Type 1. Identification of the role of this phenomenon in DM-induced growth and hemodynamic alterations in affected vascular beds remains one of the major challenges for future research in this area. Future studies should include the evaluation of
therapeutical benefits of pharmacological modulators of Akt activity.
A major obstacle to the therapeutic use of anthracyclines, highly effective anticancer agents, is the fact that their administration results in dose-dependent cardiomyopathy. According to the currently accepted hypothesis, anthracyclines injure the heart by generating oxygen free radicals. The ability of pyridoxal isonicotinoyl hydrazone (PIH) and salicylaldehyde isonicotinoyl hydrazone (SIH) – new iron chelators – to protect against peroxidation as well as their suitable biological, physical and chemical properties make the compounds promising candidates for pre-clinical and clinical studies. Activities of carbonyl reductase CR (1.1.1.184), dihydrodiol dehydrogenase DD2 (1.3.1.20), aldehyde reductase ALR1 (1.1.1.2) and P450 isoenzymes (CYP1A1, CYP1A2, CYP2B, CYP3A) involved in the metabolism of daunorubicin, doxorubicin and other drugs or xenobiotics were studied. Various concentrations of the chelators were used either alone or together with daunorubicin or doxorubicin for in vitro studies in isolated hepatocytes. A significant decrease of activity was observed for all enzymes only at PIH and SIH concentrations higher than those presumed to be used for therapy. The results show that PIH and SIH have no effect on the activities of the enzymes studied in vitro and allow us to believe that they will not interfere with the metabolism of co-administered drugs and other xenobiotics. Daunorubicin (Da) and doxorubicin (Dx) significantly reduce cytochrome P450 activity, but the addition of SIH and PIH chelators (50 μM) reverses the reduction and restores the activity to 70-90 % of the activity of relevant controls.
The effects of nitroglycerine (NTG) are mediated by liberated nitric oxide (NO) after NTG enzymatic bio-transformation in cells. The aim of this study was to evaluate some products of NTG bio-transformation and their consequences on the redox status of rat erythrocytes and reticulocytes, considering the absence and presence of functional mitochondria in these cells, respectively. Rat erythrocyte and reticulocyte-rich red blood cell (RBC) suspensions were aerobically incubated (2 h, 37 0C) without (control) or in the presence of different concentrations of NTG (0.1, 0.25, 0.5, 1.0 and 1.5 mM). In rat erythrocytes, NTG did not elevate the concentrations of any reactive nitrogen species (RNS). However, NTG robustly increased concentration of methemoglobin (MetHb), suggesting that NTG bio-transformation was primarily connected with hemoglobin (Hb). NTG-induced MetHb formation was followed by the induction of lipid peroxidation. In rat reticulocytes, NTG caused an increase in the levels of nitrite, peroxinitrite, hydrogen peroxide, MetHb and lipid peroxide levels, but it decreased the level of the superoxide anion radical. Millimolar concentrations of NTG caused oxidative damage of both erythrocytes and reticulocytes. These data indicate that two pathways of NTG bio-transformation exist in reticulocytes: one generating RNS and the other connected with Hb (as in erythrocytes). In conclusion, NTG bio-transformation is different in erythrocytes and reticulocytes due to the presence of mitochondria in the latter.
The aim of this study was to observe the effect of folate and antioxidants alone on homocysteine levels and oxidative stress markers, and to evaluate whether their co-administration promotes their effects. One hundred patients with hyperhomocysteinemia were randomized into four equal groups, which were then treated with folate, antioxidants or
folate plus antioxidants for 2 months; group IV was a control group. Serum homocysteine, folate and oxidative stress markers were measured before the study, at the end of folate and/or antioxidants administration and 3 months later. Folate caused a significant decrease in homocysteine concentration. Antioxidants did not influence homocysteine concentration, but they improved the antioxidative defense (plasma antioxidant capacity and intraerythrocyte
glutathione were increased) and partially prevented lipid peroxidation (malondialdehyde level was slightly decreased). Supplementation with folate had a similar effect on intracellular glutathione and plasma malondialdehyde. Simultaneous administration of folate and antioxidants did not show any additive effect with the exception of a slower decrease of folate concentration after its supplementation had been discontinued. Folate may be considered as an effective antioxidant in patients with hyperhomocysteinemia; this can be a result of decreased production of free radicals due to a reduced level of homocysteine. Its antioxidative effect cannot be promoted by co-administration of antioxidants.
The peroxisome proliferator-activated receptors (PPAR) belong to the nuclear superfamily of ligand-activated transcription factors. PPARγ acts as a nutrient sensor that regulates several homeostatic functions. Its disruption can lead to vascular pathologies, disorders of fatty acid/lipid metabolism and insulin resistance. PPARγ can modulate several signaling pathways connected with blood pressure regulation. Firstly, it affects the insulin signaling pathway and endothelial dysfunction by modulation of expression and/or phosphorylation of signaling molecules through the PI3K/Akt/eNOS or MAPK/ET-1 pathways. Secondly, it can modulate gene expression of the renin- angiotensin system – cascade proteins, which potentially slow down the progression of atherosclerosis and hypertension.
Thirdly, it can modulate oxidative stress response either directly through PPAR or indirectly through Nrf2 activation. In this context, activation and functioning of PPARγ is very important in the regulation of several disorders such as diabetes mellitus, hypertens
ion and/or metabolic syndrome.