Bean (Phaseolus vulgaris L. cv. Berbukskaya) seedlings were pre-treated with choline compounds, 19 mM 2-ethyltrimethylammonium chloride (Ch) or 1.6 mM 2-chloroethyltrimethylammonium chloride (CCh), during 24 h, then after 6 d the excised primary leaves were exposed to UV-B and high temperature stress. Chlorophyll (Chl) fluorescence, delayed light emission, accumulation of photosynthetic pigments, contents of thiobarbituric acid reactive substances, and activities of the active oxygen detoxifying enzymes (superoxide dismutase, ascorbate peroxidase, and glutathione reductase) were examined. Pre-treatment of plants with Ch or CCh enhanced the resistance of photosystem 2 (PS2) photochemistry to UV-B and heat injuries. The higher stress resistance can be explained by the increased activity of the detoxifying enzymes. The increased content of UV-B-absorbing pigments may also contribute to the enhanced resistance of choline-treated plants to UV-B radiation. and V. D. Kreslavski ... [et al.].
We compared responses of maize, tomato, and bean plants to water stress. Maize reached a severe water deficit (leaf water potential -1.90 MPa) in a longer period of time as compared with tomato and bean plants. Maize stomatal conductance (gs) decreased at mild water deficit. gs of tomato and bean decreased gradually and did not reach values as low as in maize. The protein content was maintained in maize and decreased at low water potential (ψw); in tomato it fluctuated and also decreased at low ψw; in bean it gradually decreased. Ribulose-1,5-bisphosphate carboxylase/oxygenase activity remained high at mild and moderate stress in maize and tomato plants; in bean it remained high only at mild stress. and M. Castrillo ... [et al.].
Sucrose metabolism was studied at three leaf development stages in two Phaseolus vulgaris L. cultivars, Tacarigua and Montalban. The changes of enzyme activities involved in sucrose metabolism at the leaf development stages were: (1) Sink (9-11 % full leaf expansion, FLE): low total sucrose phosphate synthase (SPS) activity, and higher acid invertase (AI) activity accompanied by low sucrose synthase (SuSy) synthetic and sucrolytic activities. (2) Sink to source transition (40-47 % FLE): increase in total SPS and SuSy activities, decrease in AI activity. (3) Source (96-97 % FLE): high total SPS activity, increased SuSy activities, decreased AI activity. The hexose/sucrose ratio decreased from sink to source leaves in both bean cultivars. The neutral invertase activity was lower than that of AI; it showed an insignificant decrease during the sink-source transition.
The decrease in inorganic phosphate (Pi) content of 10-d-old Phaseolus vulgaris L. plants did not affect rates of photosynthesis (PN) and respiration (RD), leaf growth, and adenylate concentration. Two weeks of phosphate starvation influenced the ATP content and leaf growth more than PN and RD. The ATP concentration in the leaves of 15- and 18-d-old phosphate deficient (-P) plants after a light or dark period was at least half of that in phosphate sufficient (+P, control) plants. Similar differences were found in fresh and dry matter of leaves. However, PN declined to 50 % of control in 18-d-old plants only. Though the RD of -P plants (determined as both CO2 evolution and O2 uptake) did not change, an increased resistance of respiration to KCN and higher inhibition by SHAM (salicylhydroxamic acid) suggested a higher engagement of alternative pathway in respiration and a lower ATP production. The lower demand for ATP connected with inhibition of leaf growth may influence the ATP producing processes and ATP concentration. Thus, the ATP concentration in the leaves depends stronger on Pi content than on PN and RD. and M. Mikulska, J.-L. Bomsel, A. M. Rychter.
Some reports indicate that mesophyll conductance (gm) to carbon dioxide varies greatly with the substomatal carbon dioxide concentration (Ci) during the measurement, while other reports indicate little or no change in g m with Ci. I used the oxygen sensitivity of photosynthesis to determine the response of gm to Ci over the range of about 100 to 300 μmol mol-1 Ci at constant temperature in common bean (Phaseolus vulgaris) and soybean (Glycine max) grown over a range of temperatures and photosynthetic photon flux densities (PPFD). In soybean grown and measured at high PPFD there was only a slight, approximately 15% decrease in gm with Ci over the range of 100 to 300 μmol mol-1. With lower PPFD during the measurement of gm, and especially with low PPFD during plant growth, there was a larger decrease in gm with Ci in soybean. In common bean, the same range in Ci resulted in about a 60% decrease in g m for plants grown and measured at high PPFD, with an even larger decrease for plants at low growth or measurement PPFD. Growth temperatures of 20 to 30°C had little influence on the response of gm to Ci or its absolute value in either species. It is concluded that these two species differed substantially in the sensitivity of gm to Ci, and that PPFD but not temperature during leaf development strongly affected the response of gm to Ci. and J. A. Bunce.