Cold hardiness of larvae of the summer fruit tortrix moth, Adoxophyes orana (Fischer von Rosslerstamm) (Lepidoptera: Tortricidae) was examined in the laboratory. Supercooling point of field collected larvae increased significantly from a mean value of -23.9°C in February 1998 to -16.9°C in June 1998. Mean supercooling points for laboratory diapause and non-diapause larvae were -20.7°C and -17.2°C respectively. Short period of acclimation (10 days at 0°C) significantly decreased supercooling point to -24.7°C for laboratory diapause larvae. Acclimation for 12 days at 5°C decreased supercooling point to -19.4°C for non-diapause larvae. Pre-freeze mortality for diapause and non-diapause larvae was also studied. Constant exposure of diapause larvae at -5°C resulted in high mortality (63.1%) after a period of 30 days. in contrast, only 6 days at -5°C were sufficient to cause 100% mortality of non-diapause larvae. Mortality of non-diapause larvae reached 100% after 12 and 18 days at 0 and 5°C respectively. The importance of these findings for the overwintering strategy of A. orana is discussed., Panagiotis G. Milonas, Mathilde Savopoulou-Soultani, and Lit
Seasonal variations in the supercooling point, survival at low temperatures and sugar content were studied in field-collected codling moth larvae. The supercooling point of field-collected larvae decreased significantly from a mean value of -13.4°C in August 2004 (feeding larvae) to -22.0°C in December 2004 (overwintering larvae). Survival at -20°C/24 h was 0% during early autumn, whereas it increased to approximately 60% during winter. The survival at low temperature was well correlated with the supercooling point. The supercooling point of the diapause destined larvae decreased from -16.9 to -19.7°C between September and October as the larvae left the food source and spun a cocoon. For early-diapause larvae, exposure to 5°C/30 days has an additional effect and decreased the supercooling point from -19.7 to -21.3°C. One-month exposure of overwintering larvae to 5°C led to a mortality of 23% in early diapause larvae, while only 4% of diapause larvae died after acclimation. Overwintering larvae accumulated trehalose during winter. There was approximately a threefold increase in trehalose content between larvae at the onset of diapause (5.1 mg/g fresh weight) and larvae in a fully developed diapause (18.4 mg/g fresh weight) collected in January. Trehalose content was correlated with supercooling capacity, survival at low temperatures and chilling tolerance, suggesting that trehalose may play some role in the development of cold tolerance in this species.
Studies were conducted investigating the responses of female obliquebanded leafrollers, Choristoneura rosaceana (Harris) and redbanded leafrollers, Argyrotaenia velutinana (Walker) (Lepidoptera: Tortricidae), to components of their sex pheromone. Electroantennogram (EAG) recordings revealed significant responses from antennae of female moths of both species to the major pheromone component, (Z)-11-tetradecenyl acetate, at dosages ranging from 2 µg - 2 mg. However, tested individually, the minor pheromone components of the obliquebanded leafroller, (E)-11-tetradecenyl acetate and (Z)-11-tetradecenol, elicited little or no antennal response from conspecific females. This result was consistent for redbanded leafroller females, which showed only weak responses to the minor component (E)-11-tetradecenyl acetate at a 2 mg dosage. For both species, species-specific blend ratios of the Z and E isomers of tetradecenyl acetate did not elicit a greater antennal response than the Z isomer alone. Virgin females of each species (2-4 d old) were placed into 1-liter plastic assay chambers with constant throughput of carbon-filtered air passed through 1-liter flasks containing rubber septa loaded with (Z)- and (E)-11-tetradecenyl acetates and (Z)-11-tetradecenol for trials with female obliquebanded leafrollers or with (Z)- and (E)-11-tetradecenyl acetates and dodecyl acetate for trials with female redbanded leafrollers. Exposure to pheromone-permeated air delayed the onset of calling by 1 h and terminated the calling period 1 h earlier for both species compared with solvent-control exposed females. Furthermore, the total proportion of calling females was reduced by half in chambers receiving constant throughput of pheromone-permeated air compared with solvent controls. Exposure to pheromone-permeated air also significantly reduced egg-laying in both species compared with clean-air controls. Furthermore, application of the major pheromone component, (Z)-11-tetradecenyl acetate, at dosages ranging from 2 µg - 2 mg to wax-paper ovipositional substrates, deterred oviposition by females of both species. Our data suggest that application of synthetic sex-attractant pheromones for mating disruption of leafroller species may have deleterious effects on female moth behavior, which may contribute to pest control. Field investigations will need to be conducted to test this hypothesis.
The efficiency of Monte-Carlo procedures to test some hypotheses about the spatial patterns of larvae and damages of Lobesia botrana was studied. Two hypotheses were tested to detect spatial heterogeneity and spatial dependence. The most practical implication is to provide an efficient sampling scheme. The study of the relationship between spatial patterns and grape availability was required to explain scales of spatial heterogeneity and population dynamics studies were needed to relate it to oviposition behavior. It was tested through a third hypothesis. We adapted Monte-Carlo simulation procedures for the analysis of exhaustive count data obtained from regular grids delimited within each of two vineyards. Statistical analyses were based on count permutations and on count redistributions according to the hypotheses which were tested. Indices of aggregation and autocorrelation statistics were used. The hypotheses that we tested at different scales were random distribution of the infestations (HR), independence of vine stock (or groups of k vine stocks) infestation (HI) and independence between vine stock infestation and grape availability (HG). Monte-Carlo tests revealed the same spatial patterns for larvae and damages. We detected different spatial patterns. The implications for sampling were that sample unit could be an individual stock and that sampling along a row could not be used to estimate population density in the vineyard. Results showed that infestation of a given stock depended on grape availability on this stock and on neighboring vine stocks., Isabelle Badenhausser, Patrice Lecharpentier, Lionel Delbac, Pascale Pracros, and Lit
Six microsatellite markers were developed for the larch budmoth Zeiraphera diniana Guénée 1845, using two enrichment protocols. The number of alleles ranged from 3 to 15 per locus and observed heterozygosities ranged from 0.09 to 0.98 for the 69 individuals genotyped. Using these markers significant genetic differentiation between one population from Poland and samples from Alpine populations in France and Switzerland (overall FST = 0.0298) was detected. However, the two Alpine samples did not differ significantly. These microsatellite markers are valuable tools for studying the population genetics of Zeiraphera diniana.
Ex ovo larvae of Lobesia botrana were reared on flowers and fruits of known and potential host plants. both in the laboratory and in the field. Development rates indicated a wide range of host suitability. In the laboratory, larvae of L. botrana had higher survivorship and shorter development time when reared on Vitis vinifera, Prunus persica (nectarina), Taraxacum officinale or Prunus domestica than when reared on Malus pumila, Pyrus amygdaliformis, Prunus armeniaca, Prunus cerasus, Syringa vulgaris or Papaver rhoeas. Similar results were obtained in the field. In no-choice tests in the laboratory, more eggs were laid on fruits than on flowers. Fruits of Prunus domestica, Vitis vinifera and Prunus persica (nectarina) were most preferred as oviposition sites.
Insect genital characters are extensively used in species level taxonomy, and their value in species delimitation is great. Based on the lock-and-key hypothesis and that genital differences function as a mechanical isolation system between species, the value of genital characters has been thought to be superior to non-genital characters. Although geographical and other kind of intraspecific variation of genitalia is often assumed very moderate, its real extent is insufficiently investigated. We examined patterns of morphological variation in the male genitalia of the tortricid moth Pammene luedersiana, using geometric morphometric tools including thin-plate spline deformation grids, and found significant variation. This variation is continuous both within and between populations. No systematic shape variation was observed between populations, but genital size showed some geographic variability. The results suggest that genital morphology is not constant and should therefore be used with caution in lepidopteran taxonomy.
Plant volatiles can synergize the response to moth pheromone. Synthetic pheromone analogs, in turn, have the opposite effect in reducing pheromone attractiveness. To determine how these two types of stimuli interact and influence male moth behaviour, we performed wind tunnel experiments on the grapevine moth, Lobesia botrana. We noticed that a blend of host plant volatiles [(E)-β-caryophyllene, 1-hexanol, (Z)-3-hexenyl acetate and 1-octen-3-ol in a 100:20:10:5 ratio] significantly increased the response of males to an optimized blend of sex pheromone [(7E,9Z)-dodeca-7,9-dienyl acetate (E7,Z9-12:Ac), (7E,9Z)- dodeca-7,9-dienol (E7,Z9-12:OH) and (Z)-9-dodecenyl acetate (Z9-12:Ac)] in a 100:10:2 ratio. However, the response of males to the natural attractant was significantly reduced by two analogs [(9E,11Z)-tetradeca-9,11-dien-2-one (MK 2) and [(9E,11Z)-1,1,1-trifluoro-tetradeca-9,11-dien-2-one (TFMK 3)], of the major component of the sex pheromone of the insect (E7,Z9-12:Ac). When both stimuli were tested on males at pheromone:analog:plant volatile blend 1:100:1000 ratio, the plant blend offset the inhibitory effect induced by TFMK 3 but not that of MK 2. Our results show for the first time that under laboratory conditions plant volatiles can prevent inhibition by a pheromone analog., Albert Sans, Miguel Morán, Magí Riba, Ángel Guerrero, Jaume Roig, César Gemeno., and Obsahuje bibliografii
A greenhouse experiment was conducted to study the indirect effects of soil salinity on a caterpillar that induces gall formation on a non-halophilic plant. Larvae of Epiblema scudderiana (Clemens) were allowed to feed on potted goldenrods (Solidago altissima L.) treated with 3 concentrations of NaCl (0, 8,000, 16,000 PPM). Experiments were also carried out with the larvae of two species of leaf beetles, Trirhabda borealis Blake, a leaf-chewer, and Microrhopala vittata F., a leaf-miner, to determine the influence of feeding guild. Adding salt to the soil affected both the plant and insect herbivores. The biomass of roots and shoots as well as root/shoot ratios of salt-stressed plants were lower, relative to controls. The biomass of the fully grown larvae and galls were decreased for the plants treated with the highest salt concentration. The percentage of biomass allocated to the gall was increased by soil salinity. All gall-inducing larvae completed their development (from second to final instar) even though their biomass was significantly reduced in the 16,000 PPM treatment. Soil salinity increased nitrogen concentrations in both gall and stem (normal) tissues but the levels were always higher in the gall. The salt treatments also increased sodium and potassium concentrations in galls and stems. Interestingly, sodium concentrations as well as the ratio of sodium ions to potassium ions increased more rapidly in the stem compared with the gall. Responses of folivorous insects to salt-stressed plants varied. Leaf-chewing larvae ate smaller amounts of plant tissue with high salt content compared with control, which also resulted in shorter feeding periods. The performance of the leaf-mining insect was not affected. However, it was able to complete its larval development within a smaller portion of the leaves. This study showed that soil salinity has a strong negative effect on S. altissima, especially on root development. Conversely, salt stress effects seemed to be progressively decreasing from the stem to the gall to the gall-inducer, which suggests that the gall tissue might act as a buffer against drastic changes in the mineral balance of the host plant. Nevertheless, it seems that unless the host plant dies, larvae of E. scudderiana can always produce a gall in which they can complete their development. On the other hand, leaf-chewing insects appeared to be sensitive to salt-rich tissues since they were deterred by them. Leaf-miners could complete their development with fewer food without any effect on their growth, suggesting that the peculiar tissues on which they feed within leaves became more abundant or nutritious in salt-treated plants.
Studies were conducted to investigate the distribution of larvae of the European vine moth, Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae), a key vineyard pest of grape cultivars. The data collected were larval densities of the second and third generation of L. botrana on half-vine and entire plants of wine and table cultivars in 2003-2004. No insecticide treatments were applied to plants during the 2-year study. The distribution of L. botrana larvae can be described by a negative binomial. This reveals that the insect aggregates. A common value for the k parameter of the negative binomial distribution of kc = 0.6042, was obtained, using maximum likelihood estimation, and the advantages and cases of use of a common k are discussed. The k-1Sinh-1(ksqrt{x+1/2}) and k-1Sinh-1(ksqrt{x+3/8}) proved to be the best transformations for L. botrana larval counts. An entire vine is recommended as the sampling unit for research purposes, whereas a half-vine, which is suitable for grape vine cultivation in northern Greece, is recommended for practical purposes. We used these findings to develop a fixed precision sequential sampling plan and a sequential sampling program for classifying the pest status of L. botrana larvae.