To investigate the photoprotection of energy dissipation and water-water cycle, a C3 euhalophytic herb, Suaeda salsa L., was exposed either to chilling temperature (4°C) accompanied by moderate irradiance (600 μmol m-2 s-1) (CM) and/or to chilling temperature (4°C) accompanied by low irradiance (100 μmol m-2 s-1) (CL). During chilling stress, both the maximal photochemical efficiency of PSII (Fv/Fm) and the oxidizable P700 decreased in S. salsa leaves either under CM or CL, which indicated the severe photoinhibition. Relative to Fv/Fm, the oxidizable P700 decreased markedly under CL, which indicated that PSI was more sensitive to CL treatment than PSII. Initial fluorescence, number of closed PSII centers, and nonphotochemical quenching increased under CM, but more markedly under CL in S. salsa leaves. Activity of superoxide dismutase and ascorbate peroxidase was higher under CM than that under CL. The production of reactive oxygen species (ROS) decreased first and then increased under both treatments, but the content of O2.- and H2O2 was higher under CL than that under CM after 12 h of chilling stress. These results suggested that photoinhibition in S. salsa might be related to the accumulation of reactive oxygen species (ROS) induced by excess energy. The water-water cycle could not dissipate energy efficiently under CL, which caused the great accumulation of ROS., N. Sui., and Obsahuje bibliografii
The changes of runoff in the middle reaches of the Yellow River basin of China have received considerable attention owing to their sharply decline during recent decades. In this paper, the impacts of rainfall characteristics and land use and cover change on water yields in the Jingle sub-basin of the middle reaches of the Yellow River basin were investigated using a combination of statistical analysis and hydrological simulations. The Levenberg Marquardt and Analysis of Variance methods were used to construct multivariate, nonlinear, model equations between runoff coefficient and rainfall intensity and vegetation coverage. The land use changes from 1971 to 2017 were ascertained using transition matrix analysis. The impact of land use on water yields was estimated using the M-EIES hydrological model. The results show that the runoff during flood season (July to September) decreased significantly after 2000, whereas slightly decreasing trend was detected for precipitation. Furthermore, there were increase in short, intense, rainfall events after 2000 and this rainfall events were more conducive to flood generation. The “Grain for Green” project was carried out in 1999, and the land use in the middle reaches of the Yellow River improved significantly, which make the vegetation coverage (Vc) of the Jingle sub-basin increased by 13%. When Vc approaches 48%, the runoff coefficient decreased to the lowest, and the vegetation conditions have the greatest effect on reducing runoff. Both land use and climate can change the water yield in the basin, but for areas where land use has significantly improved, the impact of land use change on water yield plays a dominant role. The results acquired in this study provide a useful reference for water resources planning and soil and water conservation in the erodible areas of the middle reaches of the Yellow River basin.