Drought stress triggered the accumulation of malondialdehyde (MDA) and hydrogen peroxide (H2O2) both in non-Bt and Bt cotton with simultaneous production of antioxidant enzymes. And there was no significant difference between non-Bt and Bt cotton under drought stress. In contrast to this, we observed a significant reduction of Bt toxin proteins under 72 h of drought stress in Bt cotton. and P. Parimala, K. Muthuchelian
The aim of this study was to investigate the relationship between antioxidant enzymes and reactive oxygen species production in diapausing larvae of the European corn borer, Ostrinia nubilalis (Lepidoptera: Pyralidae) kept at 5°C, -3°C and -16°C for two weeks. The amount of hydrogen peroxide (H2O2), activity of antioxidant enzymes, copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutases (MnSOD) and catalase (CAT) in whole body homogenates, as well as the electron paramagnetic resonance (EPR) spectroscopy of this insect's whole body were analysed. A higher level of melanin radical and lower CuZnSOD and CAT activities were found in larvae kept at -3°C than at 5°C and -16°C. At the same temperature (-3°C) an elevated H2O2 concentration was recorded. A possible regulatory role of H2O2 at -3°C, which is the temperature that triggers freezing tolerance, is suggested.
Experiments were conducted to investigate the effects of exogenous progesterone on photochemical efficiency of PSII and turnover of D1 protein under heat stress during the grain-filling stage. Heat stress resulted in increases of hydrogen peroxide production, malondialdehyde content, and relative electrolytic leakage in wheat leaves, but these responses were alleviated by foliar application of progesterone. Meanwhile, activities of superoxide dismutase, catalase, and peroxidase were significantly improved in progesterone-pretreated leaves. Along with the alleviation of oxidative stress, higher abundances of STN8 and phosphorylated D1 protein and lower total D1 protein content in the PSII reactive center were observed in progesterone-pretreated leaves relative to controls. Consequently, progesterone raised the potential photochemical efficiency, actual photochemical efficiency, and electron transfer rate. These results indicate that foliar application of progesterone can effectively alleviate heat-induced PSII damage by enhancing antioxidant capability and regulating phosphorylation of D1 protein in wheat leaves., R. L. Xue, S. Q. Wang, H. L. Xu, P. J. Zhang, H. Li, H. J. Zhao., and Obsahuje seznam literatury
Watermelon [Citrullus lanatus (Thunb.) Mansfeld] is a photophilic plant, whose net photosynthetic rate was significantly decreased when seedlings were grown under low light condition. However, treatment with 100 mg kg-1 5-aminolevulinic acid (ALA) could significantly restore the photosynthetic ability under the environmental stress. The parameters of leaf gas exchange, chlorophyll modulated fluorescence and fast induction fluorescence of the ALA-treated plants were higher than that of the control. Additionally, ALA treatment increased the activities of antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX). Nevertheless, the treatment of diethyldithiocarbamate (DDC), an inhibitor of SOD activity, dramatically depressed photosynthesis of watermelon leaves, while ALA could reverse the inhibition of DDC. Therefore, it can be deduced that ALA promotion on photosynthesis of watermelon leaves under low light stress is attributed to its promotion on antioxidant enzyme activities, and the increased activities of the enzymes, which are mainly located near the reaction centers of PSI, can scavenge superoxide anions, leading to an increase of apparent electron transport rate and an alleviation of photosynthetic photoinhibition under the stressed environment. and Y.-P. Sun, Z.-P. Zhang, L.-J. Wang.
The present study evaluates the protective role of Quercetin (Quer), against immobilization stress- induced anxiety, depression and cognition alteration in mice using behavioral and biochemical parameters. 24 adult Albino mice were distributed into 2 groups vehicle (n=12; 1 ml/kg) and Quer injected (n=12; 20 mg/kg/ml). The animals received their respective treatment for 14 days. On day 15, after the drug administration, animals were sub-divided into 4 groups (n=6); (i) unstressed + vehicle; (ii) stressed + vehicle; (iii) unstressed + Quer; (iv) stressed + Quer. On day 16, 24 h after the immobilization stress behavioral activities (light-dark activity, elevated plus maze, Morris water maze, and forced swim test) monitored and then animals were decapitated 1 h after the drug administration. Brain samples were collected for biochemical (antioxidant enzymes, AChE, ACh, 5-HT and its metabolite) analysis. The present study indicates the Quer reversed the stress-induced anxiety and depression, in addition, memory performance was more enhanced in stressed group. Following the treatment of Quer, stress-induced elevation of lipid peroxidation and suppression of antioxidant enzymes were also reversed. Administration of Quer decreased AChE in unstressed, while levels of acetylcholine were increased in vehicle and Quer treated stressed animals. The metabolism of 5-HT was increased in Quer treated stressed than unstressed animals. In conclusion, the present finding showed that Quer could prevent the impairment of antioxidant enzymes and also regulate the serotonergic and cholinergic neurotransmission and produce antianxiety, antidepressant effect and enhance memory following 2 h immobilization stress in mice., N. Samad, A. Saleem, F. Yasmin, M. A. Shehzad., and Obsahuje bibliografii
Spinach (Spinacia oleracea L. cv. Clermont) leaves grown in open-top chambers and exposed to three different concentrations of ozone were measured for gas exchange, chlorophyll a fluorescence, antioxidant systems, and lipid peroxidation at the end of growing season. High O3 concentration reduced Fv/Fm, indicating that the efficiency in the energy conversion of photosystem 2 (PS2) was altered. The rate of non-cyclic electron transport rate and the capacity to reduce the quinone pool were also affected. The development of non-photochemical quenching was not high enough to decrease the photon excess in the PS2. The limitation of photosynthetic activity was probably correlated with stomata closure and with an increase in intercellular CO2 concentration. Under oxidative stress, superoxide dismutase (SOD) activity was stimulated in parallel with lipid peroxidation. We did not find any differences in the ascorbate (AsA) pool and ascorbate peroxidase (APX) or glutathione reductase (GR) activities between air qualities. Small, but similar responses were observed in spinach leaves exposed to ambient ozone concentration. and A. Calatayud ...[et al.].
Ramie (Boehmeria nivea L.) is an important crop that serves as fine fiber material, high protein feedstuff, and valuable herbal medicine in China. However, increasing salinity in soil limits the productivity. We investigated in a greenhouse experiment responses to salinity in two ramie cultivars, Chuanzhu-12 (salt-tolerant cultivar, ST) and Xiangzhu-2 (salt-sensitive cultivar, SS), to elucidate the salt tolerance mechanism of this species. Salinity stress substantially reduced both chlorophyll and carotenoid contents. In addition, net photosynthesis, transpiration rate, stomatal conductance, intercellular CO2 concentration, and the ratio of intercellular CO2 to ambient CO2 were affected, less in ST. Nevertheless, salinity stress markedly improved water use efficiency and intrinsic water use efficiency in both species. Moreover, relative water contents, soluble proteins, and catalase activity were substantially impaired, while proline accumulation and superoxide dismutase activity were enhanced substantially, more in ST. Furthermore, noteworthy increase in peroxidase activity and decrease in malondialdehyde content was recorded in ST, whereas, in SS, these attributes changed conversely. Overall, the cultivar ST exhibited salt tolerance due to its higher photosynthetic capacity, chlorophyll content, antioxidative enzyme activity, and nonenzymatic antioxidants, as well as reduced lipid peroxidation and maintenance of the tissue water content. This revealed the salt tolerance mechanism of ramie plants for adaptation to salt affected soil., C.-J. Huang, G. Wei, Y.-C. Jie , J.-J. Xu, S.-Y. Zhao, L.-C. Wang, S. A. Anjum., and Obsahuje seznam literatury
a1_Different parameters that vary during leaf development may be affected by light intensity. To study the influence of different light intensities on primary leaf senescence, sunflower (Helianthus annuus L.) plants were grown for 50 days under two photon flux density (PFD) conditions, namely high irradiance (HI) at 350 μmol(photon) m-2 s-1 and low irradiance (LI) at 125 μmol(photon) m-2 s-1. Plants grown under HI exhibited greater specific leaf mass referred to dry mass, leaf area and soluble protein at the beginning of the leaf development. This might have resulted from the increased CO2 fixation rate observed in HI plants, during early development of primary leaves. Chlorophyll a and b contents in HI plants were lower than in LI plants in young leaves. By contrast, the carotenoid content was significantly higher in HI plants. Glucose concentration increased with the leaf age in both treatments (HI and LI), while the starch content decreased sharply in HI plants, but only slightly in LI plants. Glucose contents were higher in HI plants than in LI plants; the differences were statistically significant (p<0.05) mainly at the beginning of the leaf senescence. On the other hand, starch contents were higher in HI plants than in LI plants, throughout the whole leaf development period. Nitrate reductase (NR) activity decreased with leaf ageing in both treatments. However, the NR activation state was higher during early leaf development and decreased more markedly in senescent leaves in plants grown under HI. GS activity also decreased during sunflower leaf ageing under both PFD conditions, but HI plants showed higher GS activities than LI plants. Aminating and deaminating activities of glutamate dehydrogenase (GDH) peaked at 50 days (senescent leaves). GDH deaminating activity increased 5-fold during the leaf development in HI plants, but only 2-fold in LI plants., a2_ The plants grown under HI exhibited considerable oxidative stress in vivo during the leaf senescence, as revealed by the substantial H2O2 accumulation and the sharply decrease in the antioxidant enzymes, catalase and ascorbate peroxidase, in comparison with LI plants. Probably, systemic signals triggered by a high PFD caused early senescence and diminished oxidative protection in primary leaves of sunflower plants as a result., L. De la Mata ... [et al.]., and Obsahuje bibliografii
The activity of antioxidant enzymes, copper-zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD) and catalase (CAT), as well as that of the mitochondrial FAD-dependent a-glycerophosphate dehydrogenase (a-GPD) in the rat interscapular brown adipose tissue (IBAT) were studied after the treatment with methimazole (MMI) for three weeks or with iopanoic acid (IOP) for five days. Besides, the mitochondrial concentration of uncoupling protein-1 (UCP-1) and the activity of catecholamine degrading enzyme monoamine oxidase (MAO) in the IBAT as well as the activity of the catecholamine synthesizing enzyme, dopamine b-hydroxylase (DBH) in rat serum were examined. Judging by the significantly enhanced level of serum DBH, which is an index of sympathetic activity, and that of IBAT MAO, the increase in MnSOD and CAT activities in the IBAT of hypothyroid (MMI-treated) rats seems to be due to elevated activity of sympathetic nervous system (SNS). However, CuZnSOD activity is not affected by SNS. On the contrary, IOP, which is a potent inhibitor of T4 deiodination into T3 producing "local" hypothyroidism, did not change either SNS activity or activities of IBAT antioxidant enzyme. However, both treatments significantly decreased IBAT UCP-1 content and a-GPD activity suggesting that the optimal T3 concentration in the IBAT is necessary for maintaining basal levels of these key mitochondrial parameters., N. Petrović, G. Cvijić V. Davidović., and Obsahuje bibliografii
Various protocols may be used for acute pancreatitis treatment. Recently, the benefit of hyperbaric oxygen (HBO) has been demonstrated. To clarify the mechanism of HBO on the process of the acute pancreatitis, we determined the levels of antioxidant enzymes in an acute pancreatitis model. Forty-five Sprague-Dawley rats were randomly divided into three groups: Group I: sham group (n=15), Group II: pancreatitis group (n=15), Group III: pancreatitis group undergoing HBO therapy (n=15). HBO was applied postoperatively for 5 days, two sessions per day at 2.5 fold absolute atmospheric pressure (ATA) for 90 min. Superoxide dismutase (Cu/Zn-SOD), malondialdehyde (MDA), and glutathione peroxidase (GSH Px) activity were measured in pancreatic tissue and erythrocyte lysate. MDA and GSH Px were also determined in plasma. In addition, amylase levels were measured in the serum. While serum amylase levels and MDA values in erythrocyte, plasma and pancreatic tissue were decreased, the levels of GSH Px and SOD were found to be significantly increased in the Group III as compared to those of the Group II. The findings of our study suggest that HBO has beneficial effects on the course of acute pancreatitis and this effect may occur through the antioxidant systems., M. Yasar, S. Yildiz, R. Mas, K. Dundar, A. Yildirim, A. Korkmaz, C. Akay, N. Kaymakcioglu, T. Ozisik, D. Sen., and Obsahuje bibliografii