From the beginning of olive leaf yellowing to leaf fall (1/3 months), there was a general trend from anabolism to catabolism. Rates of net photosynthesis (PN) and respiration, areal dry mass, and contents of pigments, particularly of chlorophyll (Chl) a, starch, and above all nitrogen (N) decreased. The detachment force decreased dramatically only in completely chlorotic leaves. Chl a : b ratio only declined in the last 10-20 d of senescence, when the total Chl contents diminished by about 70 %, after which the N content, PN, and efficiency of the photochemical energy conversion of the remaining Chl and N dramatically declined. Consequently, for most of the natural course of senescence PN remained relatively high. The reduction in PN was associated with the decreases in transpiration rate (E) and stomatal conductance (gs), but these probably did not cause the decline of PN. The recycling of saccharide compounds was low, while 50 % of the total N on a leaf area basis was relocated back before leaf abscission, changing the leaf from a carbon source to a mineral source. Therefore, considering that senescing leaves in olive trees contribute to carbon gain and allow the recycling of resources, it is essential to prevent the premature leaf abscission by avoiding deficits of water and mineral nutrients and by using pruning and training systems that allow good irradiation of all leaves in the crown.
In this work, photosystem II (PSII) photochemistry, leaf water potential, and pigment contents of male and female Pistacia lentiscus L. were investigated during a seasonal cycle at three different, arid locations: superior semiarid, inferior semiarid, and arid. The results showed that the gender, season, and the site conditions interacted to influence the quantum yield and pigment contents in P. lentiscus. Predawn leaf water status was determined only by the site and season. The annual patterns of PSII maximum quantum efficiency (Fv/Fm) were characterized by a suboptimal activity during the winter, especially, populations with the more negative water potential exhibited a lower chlorophyll (Chl) a content and chronic photoinhibition irrespective of a gender. We also demonstrated that both photochemical or nonphotochemical mechanisms were involved to avoid the photoinhibition and both of them depended on the season. This plasticity of photosynthetic machinery was accompanied by changes in carotenoids and Chl balance. In the spring, the female Fv/Fm ratio was significantly higher than in male individuals, when the sexual dimorphism occurred during the fruiting stage, regardless of site conditions. P. lentiscus sex-ratio in Mediterranean areas, where precipitations exceeded 500 mm, was potentially female-biased. Among the fluorescence parameters investigated, nonphotochemical quenching coefficient appeared as the most useful one and a correlation was found between Chl a content and Fv/Fm. These results suggest that functional ecology studies would be possible on a large scale through light reflectance analysis. and S. Ait Said ... [et al.].
The genetic variation in low temperature sensitivity of eight tomato genotypes grown at suboptimal temperature (19 °C) and at low irradiance (140 pmol m'2 s**) was assessed at the plant, chloroplast and thylakoid membrane levels. Temperature effects on the thylakoid membrane were determined by measuring the maximum fluorescence (Fp) and the maximal fluorescence rise (ADP) of induction traces of leaf discs at decreasing temperatures (30, 28, ... 0 °C). Two discontinuities were found in Fp versus temperature curves: a low temperature break at ca. 12 °C (LTB) and a high temperature break at ca. 22 °C (FITB). Below LTB, sFp and sDP were determined as the temperature induced changes in Fp, respectively ADP. Chloroplast functioning was determined by measuring net CO2 fixation rate (E^) of leaves. Plant performance was determined by measuring the increase in leaf area and sho ot dry mass in time. Correlations between the various parameters were analysed across the genotypic variation found. Chlorophyll (Chl) fluorescence parameters were not correlated with plant performance at suboptimal growth conditions. of leaves was correlated with plant performance, but only at ambient CO2. Effects of stomatal resistance on were large. The Chl fluorescence parameters LTB, sFp and sDP could distinguish between tomato genotypes. Nevertheless, the ranking of the genotypes depended on the specific parameter selected, indicating that each parameter assessed a different aspect of the heterogeneous temperature dependence of Chl fluorescence induction. Their genetic variation suggested that the genotypes differed in the organisation and fimctioning of the thylakoid membrane. These differences were not reflected in of leaves or plant performance.
In soybean seedlings, Cd2+ affected growth and inhibited photosynthesis. Both the length and fresh mass decreased more in roots than in shoots. Cd2+ stress caused an increase in ratio of chlorophyll (Chl) (a+b)/b by 1.3 fold and ratio of total xanthophylls/β-carotene by 3 fold compared to the control. A reduced activity of photosystem 2 by about 85 % measured in Cd2+-treated chloroplasts was associated with a dramatic quenching of fluorescence emission intensity, with a band shift of 4 nm. A major suppression of absorption was accompanied with shift in peaks in the visible region of the spectrum. In Cd2+-treated chloroplasts a selective decline in linolenic acid (18:3), the most unsaturated fatty acid of chloroplasts, paralleled with the ten fold enhancement in ethylene production. A three fold increase in peroxidase activity was found in chloroplasts treated with Cd2+ compared to the control . Addition of 1 mM glutathione (GSH) counteracted all the retardation effects in soybean seedling growth induced by Cd2+. Thus GSH may control the Cd2+ growth inhibition as it detoxifies Cd2+ by reducing its concentration in the cytoplasm and removing hydrogen peroxide generated in chloroplasts.
Effects of short-term exposure to different irradiances on the function of photosystem 2 (PS2) were studied for barley grown at low (LI; 50 µmol m-2 s-1) and high (HI; 1 100 µmol m-2 s-1) irradiances. HI barley revealed higher ability to down-regulate the light-harvesting within PS2 after exposure to high irradiance as compared to LI plants. This ability was estimated from the light-induced decreases of F685/F742 and E476/E436 in emission and excitation spectra of 77 K chlorophyll (Chl) a fluorescence in vivo which was 65 and 10 % for HI plants as compared to 30 and 2 % for LI plants, respectively. For LI plants this protective down-regulation of the light-harvesting of PS2 was saturated at 430 µmol m-2 s-1, and progressive PS2 photodamage was induced at higher irradiances. After exposure of LI segments to 2 200 µmol m-2 s-1 a pronounced maximum at 700 nm appeared in emission spectrum of 77 K Chl a fluorescence. Based on complementary analysis of 77 K excitation spectra measured at the emission wavelength 685 nm we suggest that this emission maximum may be attributed to the formation of aggregates of light-harvesting complexes of PS2 (LHC2) with part of PS2 core during progressive PS2 photodamage. Our results can be explained assuming different contributions of LHC2 and PS2 core to the total nonradiative dissipation of absorbed excitation energy for the LI and HI barley. and M. Čajánek ... [et al.].
Seedlings from four provenances of Jatropha curcas were subjected to 80, 50, and 30% of soil field capacity in potted experiments in order to study their responses to water availability. Our results showed that with the decline of soil water availability, plant growth, biomass accumulation, net photosynthetic rate, stomatal conductance (gs), and transpiration rate (E) decreased, whereas leaf carbon isotope composition (δ13C), leaf pigment contents, and stomatal limitation value increased, while maximal quantum yield of PSII photochemistry was not affected. Our findings proved that stomatal limitation to photosynthesis dominated in J. curcas under low water availability. The increase of δ13C should be attributed to the decrease in gs and E under the lowest water supply. J. curcas could adapt to low water availability by adjusting its plant size, stomata closure, reduction of E, increasing δ13C, and leaf pigment contents. Moreover, effects of provenance and the interaction with the watering regime were detected in growth and many physiological parameters. The provenance from xeric habitats showed stronger plasticity in the plant size than that from other provenances under drought. The variations may be used as criteria for variety/provenance selection and improvement of J. curcas performance., C. Y. Yin, X. Y. Pang, A. D. Peuke, X. Wang, K. Chen, R. G. Gong., and Seznam literatury
We checked the hypothesis that the transient presence of anthocyanins in young leaves serves a photoprotective function. For this purpose, Rosa sp. and Ricinus communis L., whose young leaves are red to become green upon maturation, were used. Thus, young leaves with high and mature leaves with low anthocyanin contents were analysed concerning their carotenoid (Car) composition and susceptibility to photoinhibition. Cars, including the components of the xanthophyll cycle, had similar contents in young and mature leaves, when expressed on a chlorophyll basis. Yet, when expressed on a leaf area basis or on the assumed photon absorptive capacity of leaves, Cars contents were considerably lower in anthocyanic young leaves. Although this may indicate a low photodissipative potential, red young leaves were considerably less susceptible to photoinhibitory damage. The results are compatible with a photoprotective function of anthocyanins, indicating also that their presence may compensate for a low capacity in the xanthophyll cycle-dependent harmless dissipation of excess excitation energy. and Y. Manetas, A. Drinia, Y. Petropoulou.
Light-emitting diodes (LEDs) are a promising technology with a potential to improve the irradiance efficiency, light quality, and the light spectrum for increasing plant yield and quality. In this experiment, we investigated the impacts of various LED light qualities, including 100% red, 100% blue, 70% red + 30% blue, and 100% white, on the growth and photosynthesis, phytochemical contents, and mineral element concentrations in lettuce (Lactuca sativa L. cv. 'Grizzly') in comparison to normal greenhouse conditions. Photon flux of 300 µmol m-2 s-1 was provided for 14 h by 120 LEDs set on a 60 cm × 60 cm sheet of aluminum platform in the growth chambers, where plants were grown for 60 d. Fresh mass per plant was significantly higher when grown under 100% blue and 70% red + 30% blue LEDs compared to the other environments including greenhouse conditions. Phytochemical concentrations and a nutritive value of lettuce were also significantly affected by the light treatments. Chlorophyll and carotenoid concentrations increased in the plants grown under 70% red + 30% blue LEDs compared to those grown in the greenhouse. Vitamin C content was 2.25-fold higher in the plants grown under 100% blue LEDs compared to those grown in the greenhouse. Higher photosynthesis and maximal quantum yield of PSII photochemistry were also observed in the plants treated with LED lights. The application of LED light led to the elevated concentrations of macro-and micronutrients in lettuce possibly because of the direct effect of LED light and lower stress conditions in the growth chambers compared to the greenhouse. Although the mechanism of the changes in lettuce grown under LED is not well understood, the results of this study demonstrated that LED light could be used to enhance the growth and nutritional value of lettuce in indoor plant production facilities., A. Amoozgar, A. Mohammadi, M. R. Sabzalian., and Obsahuje bibliografii
Seedlings of green gram (Vigna radiata cv. ADT-1 and CO-5) were exposed to daily showers of simulated acidic rain (H2SO4 : HNO3 : HCl, 4 : 2 : 1, v/v) for 10 d. The effects were analysed after 5 and 10 showers, respectively. Rain of pH 2.5 inhibited seedling growth and biomass accumulation, though in other acidic levels the effects were mostly inconsistent. Both cultivars had high degree of surface wettability indicated by high leaf surface contact angles and water-holding capacity. Treated leaves were thinner with smaller mesophyll cells. Stomatal index and trichome density were lower in contrast to epidermal cell density and stomatal frequency which increased with increasing acidity. Decreases in chlorophyll (Chl), carotenoid (Car), and starch contents in cv. ADT-1 at pH 2.5 were observed after 5 showers, while in cv. CO-5 decreases were noted only after 10 showers. In contrast to total sugar levels, the protein content of cv. CO-5 was augmented significantly after simulated acidic rain (SAR) treatment. and G. Kumaravelu, M. P. Ramanujam.
The influence of a cytokinin, 6-benzylaminopurine (BAP), on chloroplast structure was studied using biochemical methods and electron microscopy. The average degree of thylakoid stacking was determined by digitonin fractionation and differential centrifugation of chloroplasts from tobacco plantlets after treatment with different concentrations of BAP in agar medium during cultivation in viíro. An elevated concentration of BAP in the medium induced an increase in grana stacking. This was in accordance with the lowering of the chlorophyll a/b ratio in these chloroplasts. The relative amoímt of proteins and carotenoids increased in both stromal and (to a lesser extent) granal chloroplast thylakoid fractions with the BAP concentration. The electron microscopic studies revealed nearly the same volume density of thylakoid membranes within chloroplasts of BAP treated plantlets and control ones. In the BAP treated plantlets the chloroplasts were smaller and had a profound accumulation of starch inclusions and a more flattened shape than the chloroplasts of control plantlets. The volume density of plastoglobuli in chloroplasts did not decrease under the influence of BAP,