Photosynthesis can be affected by nanoparticles (NPs) both negatively (e.g., through decreasing the chlorophyll content and electron transport rate, damages to chloroplast components, etc.) or positively (e.g., via enhancing chlorophyll content, the activity of Rubisco enzyme, the performance of PSII, and CO2 harvesting, as well as broadening the chloroplast photoabsorption spectrum). Enhanced photosynthetic efficiency could be a possible impact of NPs on photosynthetic organisms of major economic and ecological significance (e.g., crops and algae), which warrants an in-depth understanding of NPs interactions with chloroplast and its structural components (e.g., thylakoid membranes), signaling molecules, and pathways involved in photosynthesis. In this review, we comprehensively explore the potential effects of NPs on photosynthesis in different photosynthetic organisms (terrestrial plants, aquatic plants, and algae), and highlight research limitations and possible practical implications.
Relationship of leaf anatomy with photosynthetic acclimation of Valeriana jatamansi was studied under full irradiance [FI, 1 600 μmol(PPFD) m-2 s-1] and net-shade [NS, 650 μmol(PPFD) m-2 s-1]. FI plants had thicker leaves with higher respiration rate (RD), nitrogen content per unit leaf area, chlorophyll a/b ratio, high leaf mass per leaf area unit (LMA), and surface area of mesophyll cell (Smes) and chloroplasts (Sc) facing intercellular space than NS plants. The difference between leaf thickness of FI and NS leaves was about 28 % but difference in photon-saturated rate of photosynthesis per unit leaf area (PNmax) was 50 %. This indicates that PNmax can increase to a larger extent than the leaf thickness with increasing irradiance in V. jatamansi. Anatomical studies showed that the mesophyll cells of FI plants had no open spaces along the mesophyll cell walls (higher Sc), but in NS plants wide open spaces along the mesophyll cell wall (lower Sc) were found. Positive correlation between Sc and PNmax explained the higher PNmax in FI plants. Increase in mesophyll thickness increased the availability of space along the mesophyll cell wall for chloroplasts (increased Sc) and hence PNmax was higher in FI plants. Thus this Himalayan species can acclimate to full sunlight by altering leaf anatomy and therefore may be cultivated in open fields. and S. Pandey, R. Kushwaha.
Two kinds of cecidomyiid galls induced by Daphnephila on Machilus thunbergii Sieb. & Zucc. leaves at various developmental stages, i.e., young, growing, and mature, were analyzed for their biochemical composition of photosynthetic pigment-protein complexes located in thylakoid membranes using the Thornber and MARS electrophoretic fractionation systems. Both kinds of galls were totally deficient in the pigment-protein complexes CP1, and A1, AB1, and AB2 through the whole period of gall formation. Immunoblotting of antibody against light-harvesting complex 2b (LHC2b) apoprotein confirmed this deficiency in gall's lifetime, which never recovered under any condition. Electron microscopy demonstrated that already at the early developmental stage the gall chloroplasts had thylakoid morphology like that in a normal leaf. and C. M. Yang ... [et al.].
Photosynthetic assimilatíon of CO2 in a four-year-old plant of lilac, measured in April and in July, was compared. The results were calculated with regard to the surface area of the particular year groups of the stems and to the total surface area of the stems as well as to the globál surface area of the leaves of the plant. In April the stems were the only site of photosynthesis. In July the main organs of CO2 assimilatíon were the leaves, while the participation of the shoots in that period amounted to 2 %. In the process of photosynthesis in the stems mainly the endogenous CO2 was utilized, while the share of exogenous CO2 was 0.02 %. The potential photosynthesis was determined also on the basis of measurements of oxygen release by chloroplasts isolated from the bark and leaves. In July the production of oxygen by chloroplasts ffom the bark of all stems was 5 % of the amount of oxygen released by the chloroplasts isolated from the leaves. In April the production of oxygen by chloroplasts isolated from the bark of the particular year groups of the stems was higher than in July. In the process of CO2 assimilatíon by the bark and leaves the potential Chemical activity of chloroplasts was not fully utilized. The potential CO2 assimilatíon by chloroplasts isolated from the bark was 8.5 times greater than the measured results of CO2 exchange in July and 35.8 times greater in April.
We compared chloroplast photochemical properties and activities of some chloroplast-localised enzymes in two ecotypes of Phragmites communis, swamp reed (SR, C3-like) and dune reed (DR, C4-like) plants growing in the desert region of north-west China. Electron transport rates of whole electron transport chain and photosystem (PS) 2 were remarkably lower in DR chloroplasts. However, the electron transport rate for PS1 in DR chloroplasts was more than 90 % of the activity similar in the SR chloroplasts. Activities of Mg2+-ATPase and cyclic and non-cyclic photophosphorylations were higher in DR chloroplasts than in the SR ones. The activities of chloroplast superoxide dismutase (SOD) and ascorbate peroxidase (APX), both localised at or near the PS1 complex and serving to scavenge active oxygen around PS1, and the content of ascorbic acid, a special substrate of APX in chloroplast, were all higher in DR chloroplasts. Hence reed, a hydrophytic plant, when subjected to intense selection pressure in dune habitat, elevates its cyclic electron flow around PS1. In consequence, it provides extra ATP required by C4 photosynthesis. Combined high activities of active oxygen scavenging components in DR chloroplasts might improve protection of photosynthetic apparatus, especially PS1, from the damage of reactive oxygen species. This offers new explanation of photosynthetic performance of plant adaptation to long-term natural drought habitat, which is different from those, subjected to the short-term stress treatment or even to the artificial field drought. and X. Y. Zhu, G. C. Chen, C. L. Zhang.
When cells get metals in small excess, mechanisms of avoidance occur, such as exclusion, sequestration, or compartmentation. When the excess reaches sub-lethal concentrations, the oxidative stress, that toxic metals trigger, leads to persistent active oxygen species. Biomolecules are then destroyed and metabolism is highly disturbed. At the chloroplast level, changes in pigment content and lipid peroxidation are observed. The disorganized thylakoids impair the photosynthetic efficiency. The Calvin cycle is also less efficient and the photosynthetic organism grows slowly. When an essential metal is given together with a harmful one, the damages are less severe than with the toxic element alone. Combined metals and phytochelatins may act against metal toxicity. and M. Bertrand, I. Poirier.
We recently showed that the chloroplast small heat-shock protein (herein referred to as chlp Hsp24) protects photosystem 2 (PS2) during heat stress, and phenotypic variation in production of chlp Hsp24 is positively related to PS2 thermotolerance. However, the importance of chlp Hsp24 or other Hsps to other aspects of photosynthesis and overall photosynthetic thermotolerance is unknown. To begin investigating this and the importance of genetic variation in Hsp production to photosynthetic thermotolerance, the production of several prominent Hsps and photosynthetic thermotolerance were quantified in nine genotypes of Lycopersicon, and then the relationships between thermotolerance of net photosynthetic rate (PN) and production of each Hsp were examined. The nine genotypes exhibited wide variation in PN thermotolerance and production of each of the Hsps examined (chlp Hsp70, Hsp60, and Hsp24, and cytosol Hsp70). No statistically significant relationship was observed between production of chlp Hsp70 and PN thermotolerance, and only a weak positive relationship between cytosolic Hsp70 and P N was detected. However, significant positive relationships were observed between production of chlp Hsp24 and Hsp60 and PN thermotolerance. Hence natural variation in production of chlp Hsp24 and Hsp60 is important in determining variation in photosynthetic thermotolerance. This is perhaps the first evidence that chlp Hsp60 is involved in photosynthetic thermotolerance, and these in vivo results are consistent with previous in vitro results showing that chlp Hsp24 protects PS2 during heat stress. and P. J. Preczewski ... [et al.].
The stimulating effect of 1-alkyl-1-ethyl piperidinium bromides on the oxygen evolution rate in spinách chloroplasts was caused by rearrangement of thylakoid membrane.
The mechanisms of capsicum growth in response to differential light availabilities are still not well elucidated. Hereby, we analyzed differential light availabilities on the relationship between stomatal characters and leaf growth, as well as photosynthetic performance. We used either 450-500 µmol m-2 s-1 as high light (HL) or 80-100 µmol m-2 s-1 as low light (LL) as treatments for two different cultivars. Our results showed that the stomatal density (SD) and stomatal index (SI) increased along with the leaf area expansion until the peak of the correlation curve, and then decreased. SD and SI were lower under the LL condition after three days of leaf expansion. For both cultivars, downregulation of photosynthesis and electron transport components was observed in LL-grown plants as indicated by lower light- and CO2-saturated photosynthetic rate (Pmax and RuBPmax), quantum efficiency of photosystem II (PSII) photochemistry (ΦPSII), electron transport rate (ETR) and photochemical quenching of fluorescence (qp). The observed inhibition of the photosynthesis could be explained by the decrease of SD, SI, Rubisco content and by the changes of the chloroplast. The low light resulted in lower total biomass, root/shoot ratio, and the thickness of the leaf decreased. However, the specific leaf area (SLA) and the content of leaf pigments were higher in
LL-treatment. Variations in the photosynthetic characteristics of capsicum grown under different light conditions reflected the physiological adaptations to the changing light environments. and Q. S. Fu ... [et al.].
Wheat seedlings (Triticum aestivum L.) develop plastids (etioplasts and chloroplasts) which exhibit alterations in inner membrane organisation after treatment with Norflurazon (NF), an inhibitor of carotenoid biosynthesis. In dark-grown plants, it results in a decreased amount of partitions (contact zones) between prothylakoids. Under weak red radiation (WRR), plants contain chloroplasts devoid of grana. Using the fluorescent probe 9-amino acridine (9-AA), the average surface charge density of isolated prothylakoids (PTs) was -21.8±3.2 mC m-2 and -27.4±2.6 mC m-2 in the control and after treatment, respectively. Thylakoid membranes isolated from plants grown under WRR exhibited slightly more negative values, -23.5±2.9 mC m-2 and -29.0±2.1 mC m-2, in control and after NF treatment, respectively. The surface charge density of de-stacked thylakoids from greenhouse-grown untreated plants, containing extensive grana stacking, was -34.3±2.5 mC m-2. Assays using the fluorescent probe of DPH (1,6-diphenyl-1,3,5-hexatriene) showed a higher polarisation value when incorporated into thylakoids from NF-treated plants compared to untreated plants grown under WRR. The highest polarisation value was found in untreated plants grown in the greenhouse. This indicates a lower rotation transition of the probe in the lipid environment of thylakoids after NF treatment, which can be interpreted as more rigid membranes. Hence the surface charge density and the mobility of membrane components may play a major role for the formation of partitions in dark-grown plants and in the formation of grana in plants grown under WRR.