Chequered blue butterfly, Scolitantides orion (Lepidoptera: Lycaenidae) has severely declined in many parts of Europe and is currently red-listed in many countries. We studied the population structure and turnover of the species in a lake-island system in a National Park in eastern Finland over a three-year period. The incidence of the chequered blue on the suitable islands (n = 41) and habitat patches (n = 123) was high: an average of 82% of the islands and patches were occupied over the three year period. At the island scale, the annual population turnover rate was 17%, with an extinction and colonization rate of 7% and 10%, respectively. At the patch scale, the annual population turnover was 16%, with 7% extinction and 9% colonization rate. Islands that were occupied over the three year period had a larger area of suitable habitat than islands in which turnover events were observed. At the patch scale, turnover events were observed in small and poorly connected patches. Patchy occurrence of the host plant and observed extinction-colonization dynamics suggest that the chequered blue population confirms a metapopulation structure. Although the local populations are small, the observed high patch occupancy and balanced population turnover indicates that the metapopulation is not in immediate risk of extinction.
We studied the amphibian breeding migration into an old established (the beginning of the 1990s) pond and a new one (2007), using drift fences in 2008-2011. The two ponds were located at a distance of about 0.5 km from one another in a post-agricultural landscape in the Mazurian Lakeland, north-eastern Poland. We examined the community structure and migration rates of adults and juveniles. The amphibian breeding communities were similar in the two ponds in each year. The moor frog Rana arvalis was the most
common species and comprised between 35 and 55 % of all adult amphibians migrating to both ponds. The new pond was colonized by adult amphibians in the first spring after its creation. In the second year, the amphibian migration rates doubled in the new pond and remained stable over the next two years. However, during the entire period of the study the old pond was a more attractive spawning site than the new pond, when measured by the number of migrating individuals of all recorded species. Despite some annual variation, there were no significant differences between the ponds in terms of the sex structure, mean body mass or migration timing of the predominant amphibian species. The most probable explanation for the observed differences in the rates of migration is breeding site fidelity.
Many species of chironomids undergo their immature development in habitats that rapidly change in suitability, such as rain pools, phytotelmata, freshly filled ponds or soil layers that seasonally dry out. Strategies for the utilization of these habitats can be divided into two groups: i) physiological or behavioral adaptations of larvae, which enable them to survive unsuitable conditions (in situ resistance) or ii) repeated recolonization of temporarily suitable habitats. In situ resistance, includes desiccation or frost resistance, often in combination with cocoon building and migration of larvae into the sediment. Generally, the species that use the recolonization strategy tend to be better at migration and have a higher fertility and shorter development. Recolonization may include only temporary habitats or temporary habitats and some more stable habitats as well.
Aleurodicus dispersus Russell (Hemiptera: Aleyrodidae), a highly polyphagous species, has since the 90's been an important pest of ornamentals and tropical crops in the Canary Islands. In this study the RAPD-PCR technique was used to study the genetic structure of this whitefly in this archipelago. A total of 68 different bands were scored in seven populations using six primers for amplification. No differences in RAPD patterns were found among populations from different islands of the Canaries. These findings indicate a very high genetic similarity among populations and low level of genetic variability and support a single colonization event by few A. dispersus whiteflies and recent dispersion throughout the archipelago.
This review considers factors affecting the flight capacity of carabid beetles and the implications of flight for carabids. Studies from the Dutch polders in particular show that young populations of carabids consist predominantly of macropterous species and macropterous individuals of wing-dimorphic species. Also populations of wing-dimorphic carabid species at the periphery of their geographical range contain high proportions of macropterous individuals. However, studies from Baltic archipelagos show that older populations of even highly isolated island habitats contain considerable proportions of brachypterous species and individuals. This suggests that macroptery is primarily an adaptation for dispersal and that there exists a mechanism for subsequently reducing the ratio of macropterous to brachypterous species under stable conditions, due to the competitive advantage of brachyptery. Populations in isolated habitats, such as islands and mountains, have high proportions of brachypterous species. Many macropterous species do not possess functional flight muscles. Species of unstable habitats, such as tree canopies and wet habitats, are mostly macropterous. Brachypterous species tend to disappear from disturbed habitats. There is uncertainty regarding the extent to which carabid dispersal is directed and how much passive. Both Den Boer and Lindroth recognized that mostly macropterous individuals of macropterous and wing-dimorphic species disperse and found new populations, after which brachyptery tends to rapidly appear and proliferate in the newly founded population. It is most likely that the allele for brachyptery would arrive via the dispersal of gravid females which had mated with brachypterous males prior to emigration. Whilst many studies consider wing morphology traits of carabid beetles to be species-specific and permanent, a number of studies have shown that the oogenesis flight syndrome, whereby females undertake migration and subsequently lose their flight muscles by histolysis before eventually regenerating them after reproducing, has been reported for a growing number of carabid species. Wing morphology of carabid beetles clearly offers strong potential for the study of population dynamics. This field of study flourished during the 1940's to the late 1980's. Whilst a considerable amount of valuable research has been performed and published, the topic clearly holds considerable potential for future study., Stephen Venn., and Obsahuje bibliografii
The article aims to introduce and explore the concept of „transculturation". Unlike the affiliated concept of „acculturation", capitalized widely in anthropology, sociology and other branches of social Sciences, the concept of transculturation had until recently commanded little attention outside the limited area of Latin American studies. The concept, originally formulated in the 1940s by Cuban sociologist Fernando Ortiz, accentuates the mutual character of cultural interaction, the active participation of „subordinate" groups in the process, as well as the unique character of the resulting cultural formation. That is,
the processes of enforced cultural exchange (for example, through colonial expansion) are preceived as not only destructive, but also Creative. While the concept of transculturation had commonly been applied within the frame of American or African history and anthropology, the present article proposes the advantages and possibilities of its use in the study of (Central) European millieu - be it in the study of German-Jewish-Czech interaction in the nineteenth century, or in the study of Protestant-Catholic cultural exchange after the year 1620.