Methamphetamine (MA) is an addictive psychostimulant with significant potential for abuse. Previous rat studies have demonstrated that MA use during pregnancy impairs maternal behavior and induced delayed development of affected pups. The
offspring of drug-addictive mothers were often neglected and exposed to neonatal stressors. The present study therefore examines the effect of perinatal stressors combined with exposure to prenatal MA on the development of pups and maternal behavior. Dams were divided into three groups according to drug treatment during pregnancy: controls (C); saline (SA, s.c., 1 ml/kg); MA (s.c., 5 mg/ml/kg). Litters were divided into four groups according to postnatal stressors: controls (N); maternal separation (S); maternal cold-water stress (W); maternal separation plus cold-water stress (SW). The pup-retrieval test showed differences among postnatally stressed mothers and non-stressed controls. The righting reflex on
a surface revealed delayed development of pups prenatally exposed to MA/SA and postnatal stress. Negative geotaxis and Rotarod results confirmed that the MA group was the most affected. Overall, our data suggests that a combination of perinatal stress and prenatal MA can have a detrimental effect on maternal behavior as well as on the sensorimotor development of pups. However, MA exposure during pregnancy seems to be the decisive factor for impairment.
Pregnant rats were exposed to intermittent hypobaric hypoxia (at a simulated altitude of 7000 m or 5000 m) and the excitability of cortical neurons of their pups was tested. Stimulation of the sensorimotor cortex of rats prenatally exposed to hypoxia shortened the duration of cortical afterdischarges in 12-day-old rats, but did not change the excitability in 25-day-old animals. Shortening of the first afterdischarge in 35-day-old rats but the prolongation of the first afterdischarge in adult rats (as compared to the duration of cortical afterdischarges in rats not exposed to prenatal hypoxia) were registered. The possible mechanisms of different excitability of cortical neurons in rats prenatally exposed to hypobaric hypoxia are discussed., D. Marešová, I. Valkounová, K. Jandová, J. Bortelová, S. Trojan., and Obsahuje bibliografii
The development of the swimbladder nematode Anguillicola crassus Kuwahara, Niimi et Itagaki, 1974 in the definitive host (eels) was studied under experimental conditions. Small eels, Anguilla anguilla (L.) with body length 8-16 cm were infected by feeding them intermediate host copepods (Cyclops strenuus Fischer) harbouring third-stage larvae of this parasite. These experiments showed that, at 20-22° C, the development from the third-to the fourth-stage larvae lasted approximately three weeks, but some retarding third-stage larvae occurred in the wall of the host’s swimbladder or hyperparasitizing in the cuticle of adult nematodes as late as three months p.i. Young adults developed in the lumen of the swimbladder within approximately one month and noneinbryonated eggs first appeared in females 6-7 weeks p.i. The prepatent period was about three months and the patent period could be estimated to last no more than a month. Females degenerated soon after oviposition. The experiments confirmed that the size of mature A. crassus depends on the body size of its definitive host (eel).
The larval development of the nematode Contracaecum rudolphii (Rudolphi, 1819), a common parasite of the proventriculus of cormorants, was experimentally studied. Within the eggs cultivated in freshwater under laboratory temperatures of 20-22 °C, the developing larva undergoes two moults on days 4-5, attaining the third larval stage. Most of the ensheathed third-stage larvae, 291-457 µm long, hatch spontaneously from egg shells on days 5-6. Experiments have indicated that hatched ensheated third-stage larvae and those still inside egg capsules are already infective to copepods and fishes, which both can be considered paratenic (metaparatenic) hosts. Five copepod species, Acanthocyclops vernalis, Cyclops strenuus, Ectocyclops phaleratus, Eucyclops serrulatus and Megacyclops viridis, the isopod Asellus aquaticus and small carps Cyprinus carpio were infected by feeding them these larvae. In addition, 9 fish species, Alburnoides bipunctatus, Anguilla anguilla, Barbatula barbatula, Cyprinus carpio, Gobio gobio, Perca fluviatilis, Phoxinus phoxinus, Poecilia reticulata and Tinca tinca, were successfully infected by feeding them copepods previously infected with C. rudolphii third-stage larvae. In fishes, larvae from copepods penetrate through the intestinal wall to the body cavity, where, in a few weeks, they become encapsulated; the larvae substantially grow in fish, attaining the body length up to 4.87 mm. In carp fry, the nematode third-stage larvae survived for about 15 months (up to 18 months in fish infected directly, i.e., without copepods). One small cormorant (Phalacrocorax carbo sinensis) was successfully infected by feeding it with copepods harbouring C. rudolphii third-stage larvae.
The developmental time and size of a solitary koinobiont parasitoid, Gronotoma micromorpha (Perkins) (Hymenoptera: Eucoilidae), were measured in two host species: the serpentine leafminer, Liriomyza trifolii (Burgess) (Diptera: Agromyzidae) and tomato leafminer, L. bryoniae (Kaltenbach). There was no significant difference in the developmental time of G. micromorpha in these two hosts. However, significantly larger G. micromorpha adults emerged from L. bryoniae than from L. trifolii puparia. Dissection of larvae revealed that when offered a choice G. micromorpha accepted larvae of L. bryoniae more often than those of L. trifolii. The number of wasps emerging from parasitized hosts did not differ significantly between host species. These results indicate that L. trifolii and L. bryoniae are both acceptable and suitable hosts for G. micromorpha. Gronotoma micromorpha may be a useful biological control agent of both L. trifolii and L. bryoniae.
The development stages of a species may have an identical lower development threshold (LDT) and proportionally different durations. This phenomenon called "rate isomorphy" (RI) has been demonstrated for a number of insect species. In contrast, the growing day degrees accumulated over the period of larval development (sum of effective temperatures SET) should be plastic and vary with environment conditions. The prediction from RI is that, with changing conditions, the uniform LDT should be accompanied by differences in development time which remain proportional at different temperatures. This was tested by investigating the effect of diet on thermal requirements for development of larvae of the polyphagous species Autographa gamma (L.) (Lepidoptera: Noctuidae). The larvae were kept at 15.0, 20.3 and 26.7°C and fed on leaves of 13dicotyledoneous herb and tree species. The proportion of total development time spent on a particular diet was plotted against temperature. The existence of RI was inferred from a zero change in development time proportion with changing temperature. This rigorous test supported RI for 3 of 9 diets where development was completed in all temperatures. The LDT observed on 11 diets where the larvae completed development in at least 2 temperatures varied between 9.3 and 11.0°C while SET varied between 167 and 353 day degrees (dd). Assuming RI, LDT and SET for those 9 diets were recalculated. The recalculated LDT was 10.0°C and SET varied between 177-257 dd. The SET increased with decreasing water content and decreasing nitrogen content of food. Worsening food quality decreased food consumption, metabolic and food conversion efficiency, and the relative growth rate of the larvae. Increasing metabolic costs of development were thus positively correlated with SET. The standardized rate of growth (mg.dd-1) was typical for particular diets. Pupal mass decreased with increasing temperature and, within each temperature, with development length.
The effect of L-glutamate, kainate and N-methyl-D-aspartate (NMDA) on membrane currents of astrocytes, oligodendrocytes and their respective precursors was studied in acute spinal cord slices of rats between the ages of postnatal days 5 and 13 using the whole-cell patch-clamp technique. L-glutamate (10~3 M), kainate (10-3 M), and NMDA (2xl0-3 M) evoked inward currents in all glial cells. Kainate evoked larger currents in precursors than in astrocytes and oligodendrocytes, while NMDA induced larger currents in astrocytes and oligodendrocytes than in precursors. Kainate-evoked currents were blocked by the AMPA/kainate receptor antagonist CNQX (10-4 M) and were, with the exception of the precursors, larger in dorsal than in ventral horns, as were NMDA-evoked currents. Currents evoked by NMDA were unaffected by CNQX and, in contrast to those seen in neurones, were not sensitive to Mg2 + . In addition, they significantly decreased during development and were present when synaptic transmission was blocked in a Ca2+-free solution. NMDA-evoked currents were not abolished during the block of K+ inward currents in glial cells by Ba2+; thus they are unlikely to be mediated by an increase in extracellular K+ during neuronal activity. We provide evidence that spinal cord glial cells are sensitive to the application of L-glutamate, kainate and transiently, during postnatal development, to NMDA.
This paper reviews past, current and likely future research on the fish haemogregarine, Haemogregarina bigemina Laveran et Mesnil, 1901. Recorded from 96 species of fishes, across 70 genera and 34 families, this broad distribution for H. bigemina is questioned. In its type hosts and other fishes, the parasite undergoes intraerythrocytic binary fission, finally forming mature paired gamonts. An intraleukocytic phase is also reported, but not from the type hosts. This paper asks whether stages from the white cell series are truly H. bigemina. A future aim should be to compare the molecular constitution of so-called H. bigemina from a number of locations to determine whether all represent the same species. The transmission of H. bigemina between fishes is also considered. Past studies show that young fish acquire the haemogregarine when close to metamorphosis, but vertical and faecal-oral transmission seem unlikely. Some fish haemogregarines are leech-transmitted, but where fish populations with H. bigemina have been studied, these annelids are largely absent. However, haematophagous larval gnathiid isopods occur on such fishes and may be readily eaten by them. Sequential squashes of gnathiids from fishes with H. bigemina have demonstrated development of the haemogregarine in these isopods. Examination of histological sections through gnathiids is now underway to determine the precise development sites of the haemogregarine, particularly whether merozoites finally invade the salivary glands. To assist in this procedure and to clarify the internal anatomy of gnathiids, 3D visualisation of stacked, serial histological sections is being undertaken. Biological transmission experiments should follow these processes.
The current laboratory study was designed to evaluate the effect of abiotic and biotic factors such as temperature, light intensity, relative humidity and host age on biological and ecological characteristics of Aphelinus asychis (Walker) parasitizing Aphis gossypii (Glover). The traits studied were developmental duration, mortality, sex ratio, longevity, fecundity and host feeding. A. asychis can completely develop and reproduce at temperatures 18°C and 30°C, light intensities of 1000 and 7000 lux and relative humidities of 30% and 60%. Temperature had a significant effect on the developmental duration as well as on the percentage and longevity of females, while mortality from mummification to emergence, fecundity and host feeding were only slightly affected. Relative humidity only affected the developmental duration of A. asychis. Light intensity had mostly affected the biological and ecological traits of A. asychis. High light intensity resulted in a shorter developmental duration, higher incidence of females and longer life span of the female parasitoid. A high tolerance to climatic variations and life cycle well adapted to this aphid host are properties that make it likely that A. asychis could be used for the biological control of the cotton aphid in greenhouses.
The aim of our study was to test the hypothesis, whether repeated allopurinol pre-treatment (in dose of 135 mg/kg s.c.) can influence changes of brain excitability caused by long-term hypoxia exposition in young immature rats. Rat pups were exposed together with their mother in to an intermittent hypobaric hypoxia (simulated altitude of 7 000 m) since the day of birth till the 11th day (youngest experimental group) or 17th day for 8 hours a day. Allopurinol was administered daily immediately before each hypoxia exposition. The duration of evoked afterdischarges (ADs) and the shape of evoked graphoelements were evaluated in 12, 18, 25 and 35-day-old freely moving male pups. Hypobaric hypoxia prolonged the duration of ADs in 12, 18 and 25-day-old rats. The ADs were prolonged in 35-day-old rats only after the first stimulation. Allopurinol shorted the duration of ADs only in 12-day-old pups. In older experimental group the effect of allopurinol treatment was less pronounced., K. Jandová, ... [et al.]., and Obsahuje seznam literatury