Photosynthetic characteristics of ear and flag leaves of wheat species, tetraploid Triticum dicoccoides Kom and hexaploid Bima1, were studied in plants grown under well-watered (WW) and water-stressed (WS) conditions. Compared to ears, flag leaves exhibited higher photosynthetic rate (PN) at the filling stage, but more severe decrease under WS. PN in the tetraploid wheat ear remained higher than that in the hexaploid wheat during the grain-filling stage. Water stress decreased PN in both the organs; this decline was caused by a reduction in Rubisco activity, not by drought-induced stomatal limitation. Tetraploid wheat ears exhibited higher relative water content and water-use efficiency than that of hexaploid wheat, under WS. The change in phosphoenolpyruvate carboxylase activity and carbon isotope composition indicated the absence of C4 metabolism in the ears of both species under both conditions. The improved performance of the tetraploid wheat ears under WS was associated with better water relations., Y. P. Li, Y. Y. Li, D. Y. Li, S. W. Wang, S. Q. Zhang., and Obsahuje bibliografii
Responses to drought were studied using two maize inbred lines (B76 and B106) and a commercial maize hybrid (Zea mays L. cv. Silver Queen) with differing resistance to abiotic stress. Maize seedlings were grown in pots in controlled environment chambers for 17 days and watering was withheld from one half the plants for an additional 11 days. On the final treatment date, leaf water potentials did not differ among genotypes and were -0.84 and -1.49 MPa in the water sufficient and insufficient treatments, respectively. Greater rates of CO2 assimilation were retained by the stress tolerant maize inbred line, B76, in comparison to the other two genotypes 11 days after watering was withheld. Rates of CO2 assimilation for all three genotypes were unaffected by decreasing the measurement O2 concentration from 21 to 2% (v/v). Activities of phosphoenolpyruvate carboxylase (PEPC), NADP-malic enzyme (NADP-ME), and NADP malate dehydrogenase were inhibited from 25 to 49% by the water deficiency treatment. Genotypic differences also were detected for the activities of NADP-ME and for PEPC. Changes of transcript abundance for the three C4 pathway enzymes also varied among watering treatments and genotypes. However, examples where transcripts decreased due to drought were associated with the two stress susceptible genotypes. The above results showed that enzymes in the C4 photosynthetic pathway were less inhibited by drought in stress tolerant compared to stress susceptible maize genotypes., R. Sicher, J. Bunce, J. Barnaby, B. Bailey., and Obsahuje bibliografii