This article reports a method for forecasting an earthquake by synchronous anomalies of optical astronomic time-latitude residuals. The so-called optical astronomic time-latitude residuals for a certain astrometric instrument are the rest after deducting the effects of Earth whole motion from the astronomical time and latitude observations determined by the instrument. Forecasting practice for four earthquakes around the Yunnan Observatory occurring after 2010 shows that it does not generate false forecasts, and also does not miss forecasts of major earthquakes. This forecasting practice proves that the synchronous anomalies of astronomical time-latitude residuals can provide effective warning sign for earthquake occurrence around observatory station, thus deserves attention and further study. and Su Youjin, Gao Yuping, Hu Hui.
Purification of quartz using an environment-friendly method is important in the contaminants removal. This paper presents advanced method based on calcination pretreatment combined with ultrasound-assisted leaching, for removing iron impurities from industrial quartz. The solvent used is a mixture comprised by diluted hydrochloric acid and oxalic acid. The effects of experimental parameters were investigated and the purification mechanism was discussed using particle size analyzer, scanning electron microscope and polarized light microscope. SiO2 content of concentrate could be increased from 99.6828% to 99.9047%, which achieved 3N level high purity quartz, and Fe2O3 content reduced from 0.0857% to 0.0223%, under the optimal conditions, i.e., calcination temperature of 900 °C, holding time of 2 h, oxalic acid concentration of 10 g/L, hydrochloric acid concentration of 5%, liquid solid ratio of 5, leaching temperature of 60 °C, ultrasound power of 400 W and treatment time of 30 min. Compared to conventional method, the proposed method significantly accelerates the leaching process and increases the iron removal rate. At the same time, the method also can remove gas-liquid inclusions. and Yang Changqiao, Li Suqin, Bai Jiaxing, Han Shuaishuai.
Secondary deformations are ground movements occurring in areas of ceased underground mining. These are associated with delayed readjustment of rock mass resulting in subsidence, discontinuous deformations (sinks, cracks, etc.) due to destruction of underground, usually shallow, workings, and elevation of ground surface in response of rock mass to rising groundwater levels following the end of mine water drainage. Comparative analysis of secondary deformations in two former mining areas in the first period after cessation of underground hard coal mining is the subject of this study. We used ERS-1/2 and Envisat satellite radar interferometry data processed with PSInSAR technique and GIS to map vertical (in satellite’s line of sight, LOS) movements of the surface and analyse them in relation to location of coal fields and underground water table rise. In the study, two areas have been compared, the Ostrava city in the Czech part of the Upper Silesian Basin and the Wałbrzych Coal Basin in Poland. The results of analyses based on the results of PSInSAR processing between 1995 and 2000 for the Wałbrzych site indicate uplift (up to +12 mm/year) in closed parts of coal fields and subsidence (up to -8 mm/year) in areas of declining mining. Results of PSInSAR analysis over the Ostrava site indicate decaying subsidence after mine closures in the rate of up to -6 mm/year during 1995-2000. Residual subsidence and gentle uplift have been partly identified at surroundings of closed mines in Ostrava from 2003-2010 Envisat data. In Wałbrzych gentle elevation has been determined from 2002 to 2009 in areas previously subsiding. and Blachowski Jan, Jiránková Eva, Lazecký Milan, Kadlečík Pavel, Milczarek Wojciech.