Semi-natural habitats are key components of rural landscapes because they shelter a significant number of overwintering arthropods that are beneficial to agriculture. However, woodlots are semi-natural habitats with high patch-level heterogeneity and this aspect has been poorly studied. The purpose of this study was to determine the influence of woodlot heterogeneity on overwintering ground beetles. Woodlot heterogeneity was characterized in terms of distance from the woodlot boundary and date of the most recent logging operation. We used emergence traps to quantify the population density of ground beetles that overwintered in the different parts of the woodlot. In woodlot edges the densities and species richness of ground beetles were significantly higher than in the rest of the woodlot. Ground beetles that are active in crop fields overwintered in the edges but not in the inner zone of the woodlot. Species assemblages of ground beetles overwintering in the edges were highly diverse. The date of the most recent logging operation did not explain the distribution of ground beetles that overwintered in the woodlot. Our results show that woodlots, and in particular their edges, are used as a winter shelter by ground beetles that spend part of their life in crops, which potentially favours biological control in adjacent crop fields. and Anthony Roume, Annie Ouin, Laurent Raison, Marc Deconchat.
The Asian ladybird Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) is regarded as an invasive species in many parts of the world. In a previous study we hypothesised that H. axyridis enters diapause at the end of October and then shifts to a quiescent state in December in northwestern Europe. In the present study we test this idea of a short, early period of diapause by sampling beetles from their hibernation sites immediately after their migratory flights in October, subsequently keeping them in outdoor cages, and then, after certain time-intervals, measuring the pre-oviposition time under optimal egg-laying laboratory conditions at 25°C. We did this at both short (12L) and long (16L) photoperiods, since a photoperiodic response is an indicator of true diapause, rather than quiescence. A significant, albeit small, difference in pre-oviposition period between the two photoperiods, which disappears in December, corroborates our earlier hypothesis that the ladybirds are in a state of diapause until mid-December. Compared with that of native ladybirds the diapause of H. axyridis generally is relatively short and weak; moreover, it appears to have become shorter over the last decade. This flexibility in diapausing behaviour may be an important factor that contributes to the invasive success of H. axyridis., C. Lidwien Raak-Van Den Berg ... [et al.]., and Obsahuje seynam literatury
Flight activity in a pentatomid bug, Graphosoma lineatum, was measured under different photoperiodic conditions. Insects started flying 3 days after adult ecdysis and the percentage of flying adults became highest about 1 week after the ecdysis, regardless of the photoperiod. Under long day (18L : 6D), high flight activity was continued, whereas under short day (12L : 12D), most adults stopped flying when diapause was induced. In both photoperiods, a small number of adults showed flight of a long duration, longer than 30 minutes. Thus, no evidence was found relating the long flight to diapause. It is suggested that diapause adults of G. lineatum do not overwinter far from their breeding sites and thus there is no migration to hibernation sites. Also, the long flight is probably only a foraging flight, enabling the bugs to find their dispersed host plants.
Effect of photoperiod on the duration of summer and winter diapause was investigated in the cabbage butterfly, Pieris melete. By keeping naturally induced aestivating and hibernating pupae under various photoperiods, it was shown that diapause duration of aestivating pupae was significantly longer at long than at short daylengths, whereas diapause duration of hibernating pupae was significantly shorter at long than at short daylengths, suggesting both aestivating and hibernating pupae require opposite photoperiodic signals to promote diapause development. By transferring diapausing pupae, induced under various photoperiods, to 20°C with a naturally changing summer daylength, the diapause induced by short daylengths was easier to terminate than diapause induced by long daylengths. When naturally induced aestivating and hibernating pupae were kept under natural conditions, aestivating pupae had a long diapause (mean 155 days) and wide range of emergence (90 days), whereas hibernating pupae had a short diapause (mean 105 days) and a relatively synchronized emergence (lasted 30 days). Finally, the ecological significance of photoperiodic regulation of diapause duration is discussed.
I investigated effects of density-dependent variation in host plant quality on adult feeding and overwintering success of the leaf beetle Chrysomela lapponica L. During pre-overwintering period adult beetles were fed in the laboratory on host plants, Salix borealis, originating from (a) a site with low density population of C. lapponica, (b) a site with peak density of C. lapponica, and (c) a post-outbreak site. Beetles fed on plants from low density and peak density sites demonstrated similar performance, whereas on plants from post-outbreak site beetles fed longer, gained more weight, and experienced greater mortality during overwintering. Higher water content in these beetles suggests that the main reason for increased winter mortality is insufficient dehydration of the beetles' bodies, presumably due to low quality food. The total carbon concentration in host plant foliage explained variation in most beetle performance indices, while total nitrogen did not correlate with beetle performance. Damage-induced decrease in quality of host plants from post-outbreak sites (delayed inducible resistance, DIR), associated with increase in carbon-containing defensive compounds, was earlier found to increase larval mortality and thus contribute to the decline in population density of C. lapponica. Results of the current study suggest that DIR can also disturb pre-overwintering feeding and thus increase winter mortality of adult beetles, enhancing post-outbreak density decline.
Effect of pre-diapause temperature on summer and winter diapause intensity was examined under both laboratory and field conditions. Under short photoperiods of 8L : 16D and 10L : 14D, all pupae entered diapause at 15, 18 and 20°C and the incidence of diapause dropped to 82.3% and 85.5% at 22°C, respectively. Under long photoperiods of 14L : 10D and 16L : 8D, the incidence of diapause decreased with increasing temperature and there were significant differences among temperatures. The incidence of diapause at 16L : 8D was significantly lower than that under14L : 10D at 20 and 22°C. By transferring diapause pupae induced under various temperatures (18, 20 and 22°C) at a short day of 10L : 14D or a long day of 14L : 10D, to 12.5L : 11.5D, 20°C, the duration of summer diapause induced under 22°C (mean 76.1 days) was significantly shorter than those under 20°C (mean 85.9 days) and 18°C (mean 90.9 days), showing that the incidence of summer diapause was positively linked to the intensity of summer diapause; whereas the duration of winter diapause induced under 10L : 14D was similar at 18°C (89.2 days), 20°C (88.7 days) and 22°C (89.2 days) and there were no significant differences. Field experiments also showed that the high rearing temperatures significantly decreased the incidence and intensity of summer diapause, but had no significant affect on the intensity of winter diapause. When the naturally aestivating pupae from the first spring generation (formed on 24 April) and second spring generation (formed on 15 May) were kept under summer conditions, the diapause duration of the first generation lasted for 107-166 days (mean 146 days), about twenty days longer than that of the second generation [lasted for 92-151 days (mean 126 days)]. All results reveal that the sensitivity to temperature prior to aestivation and hibernation was quite different.
Since 1978, the abundance of Coccinella septempunctata L. has been recorded at a hibernation site in the western Czech Republic. Over the years, abundance varied by two orders of magnitude and a long-term trend for decrease in C. septempunctata abundance was observed beginning in the early 1990s. This recession was correlated with the decreasing abundance of its dominant prey, cereal aphids. The acreage of small grain cereals and other crops suitable for breeding C. septempunctata populations also decreased. The change in abundance of cereal aphids may be associated with a dramatic decrease in fertilizer input after 1990. Decreasing fertilizer use has changed the quality of small grain cereal crops and is reflected in lower yields.
In order to identify population trends in Barbastella barbastellus in Poland we summarised results of long-term winter bat counts conducted between 1985 and 2004 in seven of the most important hibernacula of the species. The results show an upward trend in four of the sites while in the remaining four no trend was found. The numbers of barbastelles in Poland seem stable or even increasing. In Central Europe the species is not threatened as seriously as it is in Western Europe.
There are two principal mechanisms of acetylcholine (ACh) release from the resting motor nerve terminal: quantal and non-quantal (NQR); the former being only a small fraction of the total, at least at rest. In the present article we summarize basic research about the NQR that is undoubtedly an important trophic factor during endplate development and in adult neuromuscular contacts. NQR helps to eliminate the polyneural innervation of developing muscle fibers, ensures higher excitability of the adult subsynaptic membrane by surplus polarization and protects the RMP from depolarization by regulating the NO cascade and chloride transport. It shortens the endplate potentials by promoting postsynaptic receptor desensitization when AChE is inhibited during anti-AChE poisoning. In adult synapses, it can also activate the electrogenic Na+/K+-pump, change the degree of synchronization of quanta released by the nerve stimulation and affects the contractility of skeletal muscles., F. Vyskočil, A. I. Malomouzh, E. E. Nikolsky., and Obsahuje seznam literatury
The body length variation, sex ratio, ovarian development and natural enemies (parasitoids and entomopathogenic fungi) of Coccinella septempunctata were studied during two dormancy seasons in three hibernation sites in the Karkonosze mountains: the top of Mt. Śnieżka (1,600 m a.s.l.), the top of Mt. Szrenica (1,360 m a.s.l.) and Karpacz, the village at the foot of Mt. Śnieżka (800 m a.s.l.). The proportion of females and mean body length increased with the altitude of the hibernaculum. Post-diapause maturation of ovaries occurred earlier in spring in females from Karpacz than from the mountain tops. The rate of parasitization of C. septempunctata by its most common parasitoid, the braconid Dinocampus coccinellae, in both seasons exceeded 70% at Karpacz and was 14-28% in the mountain top hibernacula. In contrast, the incidence of fungal infection (mainly by Paecilomyces farinosus and Beauveria bassiana) was higher in beetles overwintering on the two mountain tops.