Podstatou rekognície ako jednej z foriem kriminalistickej identifikácie je
znovupoznávanie, ktoré sa môže uskutočniť iba vtedy, pokiaľ vo vedomí človeka existuje pamäťová stopa, ktorá sa vzťahuje k určitej kriminalisticky relevantnej udalosti. Obraz zafixovaný v pamäťovej stope si znovupoznávajúca osoba vybaví v priebehu rekognície vo forme predstavy, ktorú porovnáva s odrazom (momentálnym vnímaním) predvádzaného (ukazovaného) objektu vo svojom vedomí. Príspevok sa zaoberá základným vymedzením, podstatou, významom ako aj subjektmi rekognície, pričom konkrétnejšie sa zapodieva zvláštnosťami jej jednotlivých druhov. Ďalšia časť článku podrobnejšie rozoberá jednotlivé faktory, ktoré ovplyvňujú presnosť pamäte očitého svedka, vrátane rekognície a sú rozdelené na tie, ktoré môžu, a na tie, ktoré nemôžu kontrolovať orgány činné v trestnom konaní. and Recognition of human individuals plays a major role in forensic identification. It occurs only if person's mind contains a memory trace which relates to a relevant event. The person creates an image in their mind from their memory trace while they compare it to their current reflection (representation) of the observed object. This article explains definition and meaning of recognition, participants' role, and discusses various categories and their characteristic attributes in recognition. The content then moves to the factors which influence eyewitness's memory accuracy including recognition and distinguishes between the factors law enforcement can and cannot affect.
The whiteflies Trialeurodes lauri and T. ricini have been found to be moving in international plant trade. The taxonomic validity and separation of these species is relevant to the plant health quarantine services of the European Union as T. lauri is oligophagous, nor recorded as a virus vector and present in the EU, whereas T. ricini is polyphagous, reported to be a virus vector, and absent from the EU (except for the Canary Islands). Yet doubt has been cast on the validity of the two species, with the suggestion that T. lauri is merely a variant of T. ricini. The taxonomic relationship was therefore investigated using morphological and molecular data. One morphological character traditionally used for the separation of these two species, the arrangement of the submarginal papillae, was found to be unreliable but morphological differences between the two species were found in the cephalic setal state, body outline and dorsal pigmentation. However, the differences were subtle and not always reliable. The molecular data, based on the sequence of a fragment of the COI gene, support the hypothesis that T. ricini and T. lauri are distinct valid species.
Tomicus piniperda and T. destruens are sibling species which are extremely difficult to separate by morphological characters. Although several papers report differences between the two species, many characters need confirmation or better description. Moreover, new morphological characters are required for correct species determination. For these purposes, eight populations of T. destruens from Italy, Greece, Spain and Algeria, and ten of T. piniperda from Finland, Poland, Czech Republic, Austria, Sweden and Italy, were investigated considering eleven morphological characters. The morphological differences most useful for the species separation include four previously described characters (colour of the elytra, colour of the antennal club, distribution of the antennal setae, distribution of the punctures along the elytral declivity), and four new characters (body proportions, setation of the first antennal club suture, sculpture of the elytral declivity and striae density of the pars stridens). Distribution of the two species is discussed and an illustrated key is included.
A method for identification of mechanical parameters of an asynchronous motor is presented in this paper. The identification method is based on the use of our knowledge of the system. This paper clarifies the method by using the example identifying of mechanical parameters of the three-phase squirrel-cage asynchronous motor.A model of mechanical subsystem of the motor is presented as well as results of simulation. The special neural network is used as an identification model and its adaptation is based on the gradient descent method.The parameters of mechanical subsystem are derived from the values of synaptic weights of the neural identification model after its adaptation. Deviation of identified mechanical parameters in the case of moment inertia was up to 0.03% and in the case of load torque was 1.45% of real values.
This paper deals with the identification of nonlinear dynamic systems by LOLIMOT algorithm, which allows to gradually build the neuro-fuzzy model of the identified system. The mathematical model as well as the identification algorithm for MISO and MIMO systems are described. The methodology is demonstrated on several examples. and Obsahuje seznam literatury
The new test approach for evaluation of thermo-visco-elastic parameters of elastomers is designed, realized and discussed herein. The main attention is devoted to a kinematically excited rubber beam specimen under transient resonant sweep excitation. Mechanical material characteristics, i.e. Young modulus and loss angle, are identified from analytical formulas of frequency function based on measured dynamic loading and response signals. Heat material constants were estimated indirectly by numerical thermo-mechanical FE model and matching numerical and experimental results. The 'sweep' regime tests serve for estimation of thermal and mechanical dependences. Long-term fatigue tests with cyclic resonant loading enable analysis of material degradation, such as hardening and permanent deformations. and Obsahuje seznam literatury
Monozoic cestodes of the genus Khawia Hsü, 1935 (Caryophyllidea: Lytocestidae), parasites of cyprinid fish in Europe, Asia, Africa and North America, are revised on the basis of taxonomic evaluation of extensive materials, including recently collected specimens of most species. This evaluation has made it possible to critically assess the validity of all 17 nominal species of the genus and to provide redescriptions of the following seven species considered to be valid: Khawia sinensis Hsü, 1935 (type species); K. armeniaca (Cholodkovsky, 1915); K. baltica Szidat, 1941; K. japonensis (Yamaguti, 1934); K. parva (Zmeev, 1936); K. rossittensis (Szidat, 1937); and K. saurogobii Xi, Oros, Wang, Wu, Gao et Nie, 2009. Several new synonyms are proposed: Khawia barbi Rahemo et Mohammad, 2002 and K. lutei Al-Kalak et Rahemo, 2003 are synonymized with K. armeniaca; K. coregoni Kritscher, 1990 with Caryophyllaeus laticeps (Pallas, 1781) (family Caryophyllaeidae); K. cyprini Li, 1964 and K. iowensis Calentine et Ulmer, 1961 with K. japonensis; K. dubia (Szidat, 1937) (syn. Bothrioscolex dubius Szidat, 1937) with K. rossittensis; and Tsengia neimongkuensis Li, 1964 and T. xiamenensis Liu, Yang et Lin, 1995 with K. sinensis. Khawia prussica (Szidat, 1937) (syn. Bothrioscolex prussicus Szidat, 1937) is considered to be species incertae sedis, but its morphology indicates it may belong to Caryophyllaeus Gmelin, 1790 (Caryophyllaeidae). The molecular analysis of all seven valid species, based on comparison of sequences of two nuclear ribosomal and two mitochondrial genes, has shown that the species form three major groups clustered according to their fish hosts. Five species from common and crucian carp and goldfish were grouped together, whereas K. armeniaca from barbels (Barbinae) and K. baltica from tench (Tinca) formed separate clades. In contrast, geographical distribution does not seem to play a crucial role in grouping of individual taxa. A phylogenetic tree based on morphological characters was incongruent with that inferred from molecular data, which indicates that some morphological traits may be homoplastic. A key to identification of all species of Khawia based on morphological characteristics is provided.
A comparative study of the scoleces of caryophyllidean tapeworms (Cestoda: Caryophyllidea), parasitic in cypriniform fishes in the Palaearctic Region, was carried out using light and scanning electron microscopy. Three-dimensional pictures of the scoleces of 18 species of caryophyllidean cestodes of the Capingentidae (1 species), Caryophyllaeidae (7) and Lytocestidae (10), and outlines of the scoleces and anterior extent of the testes and vitelline follicles of 19 Palaearctic taxa were documented. Both species of Atractolytocestus Anthony, 1957 possess a bulboacuminate scolex, whereas species of Archigetes Leuckart, 1876 have fossate scoleces of the bothrioloculodiscate type, with loculi, bothrium-like depressions and an apical disc. Breviscolex orientalis Kulakovskaya, 1962, the only member of the Capingentidae, has a cuneiform scolex, as do both taxa of the lytocestid genus Caryophyllaeides Nybelin, 1922. The scoleces of two species of Caryophyllaeus Gmelin, 1790 are flabellate, whereas that of the congeneric C. fimbriceps Annenkova-Chlopina, 1919 is cuneicrispitate. Khawia Hsü, 1935, the most specious Palaearctic genus, with seven taxa that we consider to be valid, has the highest diversity in scolex morphology: semi-bulbate, flabellate, cuneiform, cuneifimbriate, truncated cuneiform-flabellate and festoon-like. Species of Monobothrium Nybelin, 1922 have either a digitiform scolex with widened posterior part or cuneiform, with lateral auricular extensions. Paracaryophyllaeus gotoi (Motomura, 1927) is characteristic in its possessing a bulbate scolex, whereas Paraglaridacris limnodrili (Yamaguti, 1934) has a fossate scolex of the bulboloculate type with bothrium-like depressions and feebly developed lateral loculi. Anterior extent of the testes and vitelline follicles and their mutual position show a somewhat higher variability than scolex shape, with intraspecific variation in some taxa, such as Atractolytocestus sagittatus (Kulakovskaya et Akhmerov, 1965), B. orientalis, Khawia armeniaca (Cholodkovsky, 1915) and K. sinensis Hsü, 1935. Based on scolex morphology and relative position of the anterior testes and vitelline follicles, a key is provided to facilitate the routine identification of 20 Palaearctic caryophyllidean taxa.
A comparative study of the scoleces of monozoic tapeworms (Cestoda: Caryophyllidea), parasites of catostomid and cyprinid fishes (Teleostei: Cypriniformes) in the Nearctic Region, was carried out using light and scanning electron microscopy. Scoleces of 22 genera of North American caryophyllideans were characterised and their importance for taxonomy, classification and phylogenetic studies was critically reviewed. Nearctic genera exhibit a much higher variation in the shape and form of scoleces compared with taxa in other biogeographical regions. The following basic scolex types can be recognised in Nearctic caryophyllideans: monobothriate (Promonobothrium Mackiewicz, 1968), loculotruncate (Promonobothrium, Dieffluvium Williams, 1978), bothrioloculodiscate (Archigetes Leuckart, 1878, Janiszewskella Mackiewicz et Deutsch, 1976, Penarchigetes Mackiewicz, 1969, Pseudoglaridacris Oros, Uhrovič et Scholz, 2018), fixomegabothriate (Capingens Hunter, 1927), bulbate and bulboacuminate (Atractolytocestus Anthony, 1958), cuneiloculate (Hypocaryophyllaeus Hunter, 1927, Rowardleus Mackiewicz et Deutsch, 1976, Spartoides Hunter, 1929), biacetabulate, bulboloculate, bothrioloculodiscate (Biacetabulum Hunter, 1927), tholate (Hunterella Mackiewicz et McCrae, 1962), cuneifimbriate (Khawia Hsü, 1935), cuneiform (Calentinella Mackiewicz, 1974, Caryophyllaeides Nybelin, 1922, Edlintonia Mackiewicz, 1970), hastate (Pseudolytocestus Hunter, 1929), loculotholate (Bialovarium Fischthal, 1953, Pliovitellaria Fischthal, 1951), and cuneiformoloculate (Glaridacris Cooper, 1920, Isoglaridacris Mackiewicz, 1965). The same type of scolex may be shared by species of different genera or families and species of the same genus can have a scolex of conspicuously different morphology, e.g. in Promonobothrium. Scolex morphology may be therefore of limited use in generic designation.
A comparative study of the scoleces of monozoic tapeworms (Cestoda: Caryophyllidea), parasites of catostomid and cyprinid fishes (Teleostei: Cypriniformes) in the Nearctic Region, was carried out using light and scanning electron microscopy. Scoleces of 22 genera of North American caryophyllideans were characterised and their importance for taxonomy, classification and phylogenetic studies was critically reviewed. Nearctic genera exhibit a much higher variation in the shape and form of scoleces compared with taxa in other biogeographical regions. The following basic scolex types can be recognised in Nearctic caryophyllideans: monobothriate (Promonobothrium Mackiewicz, 1968), loculotruncate (Promonobothrium, Dieffluvium Williams, 1978), bothrioloculodiscate (Archigetes Leuckart, 1878, Janiszewskella Mackiewicz et Deutsch, 1976, Penarchigetes Mackiewicz, 1969, Pseudoglaridacris Oros, Uhrovič et Scholz, 2018), fixomegabothriate (Capingens Hunter, 1927), bulbate and bulboacuminate (Atractolytocestus Anthony, 1958), cuneiloculate (Hypocaryophyllaeus Hunter, 1927, Rowardleus Mackiewicz et Deutsch, 1976, Spartoides Hunter, 1929), biacetabulate, bulboloculate, bothrioloculodiscate (Biacetabulum Hunter, 1927), tholate (Hunterella Mackiewicz et McCrae, 1962), cuneifimbriate (Khawia Hsü, 1935), cuneiform (Calentinella Mackiewicz, 1974, Caryophyllaeides Nybelin, 1922, Edlintonia Mackiewicz, 1970), hastate (Pseudolytocestus Hunter, 1929), loculotholate (Bialovarium Fischthal, 1953, Pliovitellaria Fischthal, 1951), and cuneiformoloculate (Glaridacris Cooper, 1920, Isoglaridacris Mackiewicz, 1965). The same type of scolex may be shared by species of different genera or families and species of the same genus can have a scolex of conspicuously different morphology, e.g. in Promonobothrium. Scolex morphology may be therefore of limited use in generic designation., Mikuláš Oros, Dalibor Uhrovič, Anindo Choudhury, John S. Mackiewicz and Tomáš Scholz., and Obsahuje bibliografii