Some reports indicate that mesophyll conductance (gm) to carbon dioxide varies greatly with the substomatal carbon dioxide concentration (Ci) during the measurement, while other reports indicate little or no change in g m with Ci. I used the oxygen sensitivity of photosynthesis to determine the response of gm to Ci over the range of about 100 to 300 μmol mol-1 Ci at constant temperature in common bean (Phaseolus vulgaris) and soybean (Glycine max) grown over a range of temperatures and photosynthetic photon flux densities (PPFD). In soybean grown and measured at high PPFD there was only a slight, approximately 15% decrease in gm with Ci over the range of 100 to 300 μmol mol-1. With lower PPFD during the measurement of gm, and especially with low PPFD during plant growth, there was a larger decrease in gm with Ci in soybean. In common bean, the same range in Ci resulted in about a 60% decrease in g m for plants grown and measured at high PPFD, with an even larger decrease for plants at low growth or measurement PPFD. Growth temperatures of 20 to 30°C had little influence on the response of gm to Ci or its absolute value in either species. It is concluded that these two species differed substantially in the sensitivity of gm to Ci, and that PPFD but not temperature during leaf development strongly affected the response of gm to Ci. and J. A. Bunce.
Nedávno se třem skupinám ve Spojených státech podařilo zpomalit světelný puls na neuvěřitelných několik metrů za vteřinu a posléze jej dokonce na okamžik zastavit. Pokusy byly prováděny ve třech různých prostředích: v Boseově-Einsteinově kondenzátu sodíkových atomů, v parách atomů rubidia a v krystalu křemičitanu yttritého, dopovaném praseodymem. K zastavování světla se využívá jevu elektromagneticky indukované průhlednosti, kdy za určitých rezonančních podmínek jeden, tzv. kontrolní laserový puls vytváří společně s druhým zkušebním pulsem průhledné prostředí s obrovskou disperzí indexu lomu. Ta je pak vlastní příčinou radikálního snížení grupové rychlosti zkušebního světelného pulsu, který s koherentními kvantovými stavy atomů vytváří "propletený" stav, tzv. tmavý polariton, šířící se beze ztrát prostředím. Rychlost tmavého polaritonu je možné ovládat kontrolním pulsem. Polariton lze zastavit, přičemž je celý zkušební puls převeden do koherentních kvantových stavů atomů a posléze je možné zkušební puls v původní podobě obnovit. V tomto přehledu jsou odvozeny rovnice, které tyto jevy popisují, jednotlivé pokusy jsou podrobně diskutovány a jsou zmíněna možná využití zastavování světla., Vladimír Dvořák., and Obsahuje bibliografie