The reconstruction algebra is a generalization of the preprojective algebra, and plays important roles in algebraic geometry and commutative algebra. We consider the homological property of this class of algebras by calculating the Hochschild homology and Hochschild cohomology. Let Λt be the Yoneda algebra of a reconstruction algebra of type A1 over a field k. In this paper, a minimal projective bimodule resolution of Λt is constructed, and the k-dimensions of all Hochschild homology and cohomology groups of Λt are calculated explicitly., Bo Hou, Yanhong Guo., and Obsahuje seznam literatury
The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear prolongator smoother. The tentative prolongator is responsible for the approximation, while the prolongator smoother enforces the smoothness of the coarse-level basis functions., Jan Brousek, Pavla Fraňková, Petr Vaněk., and Obsahuje seznam literatury
We consider the class H0 of sense-preserving harmonic functions f = h + \bar g defined in the unit disk |z| < 1 and normalized so that h(0) = 0 = h′(0) − 1 and g(0) = 0 = g′(0), where h and g are analytic in the unit disk. In the first part of the article we present two classes PH0(α) and GH0(β) of functions from H0 and show that if f \in PH0(α) and F \in GH0(β), then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections (partial sums) {s_{n,n}}\left( f \right)\left( z \right) = {s_n}\left( h \right)\left( z \right) + \overline {{s_n}\left( g \right)\left( z \right)} , where f = h + \bar g \in H0, sn(h) and sn(g) denote the n-th partial sums of h and g, respectively. We prove, among others, that if f = h + \bar g \in H0 is a univalent harmonic convex mapping, then sn,n(f) is univalent and close-to-convex in the disk |z| < 1/4 for n ≥ 2, and sn,n(f) is also convex in the disk |z| < 1/4 for n ≥ 2 and n ≠ 3. Moreover, we show that the section s3,3(f) of f \in CH0 is not convex in the disk |z| < 1/4 but it is convex in a smaller disk., Liulan Li, Saminathan Ponnusamy., and Obsahuje seznam literatury
Let $\theta\in(0,1)$, $\lambda\in[0,1)$ and $p,p_0,p_1\in(1,\infty]$ be such that ${(1-\theta)}/{p_0}+{\theta}/{p_1}=1/p$, and let $\varphi, \varphi_0, \varphi_1 $ be some admissible functions such that $\varphi, \varphi_0^{p/{p_0}}$ and $\varphi_1^{p/{p_1}}$ are equivalent. We first prove that, via the $\pm$ interpolation method, the interpolation $\langle L^{p_0),\lambda}_{\varphi_0}(\mathcal{X}), L^{p_1),\lambda}_{\varphi_1}(\mathcal{X}), \theta\rangle$ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal{X}$ is the generalized grand Morrey space $L^{p),\lambda}_{\varphi}(\mathcal{X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces., Yi Liu, Wen Yuan., and Obsahuje bibliografické odkazy
We investigate the invariant rings of two classes of finite groups $G\leq{\rm GL}(n,F_q)$ which are generated by a number of generalized transvections with an invariant subspace $H$ over a finite field $F_q$ in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with different invariant subspaces which have the same dimension. We provide a explicit classification of these groups and calculate their invariant rings., Xiang Han, Jizhu Nan, Chander K. Gupta., and Obsahuje bibliografické odkazy
We investigate isometric composition operators on the weighted Dirichlet space {D_\alpha } with standard weights {(1 - {\left| z \right|^2})^\alpha },\alpha > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space D. We solve some of these but not in general. We also investigate the situation when {D_\alpha } is equipped with another equivalent norm., Shi-An Han, Ze-Hua Zhou., and Obsahuje seznam literatury