Let $\theta\in(0,1)$, $\lambda\in[0,1)$ and $p,p_0,p_1\in(1,\infty]$ be such that ${(1-\theta)}/{p_0}+{\theta}/{p_1}=1/p$, and let $\varphi, \varphi_0, \varphi_1 $ be some admissible functions such that $\varphi, \varphi_0^{p/{p_0}}$ and $\varphi_1^{p/{p_1}}$ are equivalent. We first prove that, via the $\pm$ interpolation method, the interpolation $\langle L^{p_0),\lambda}_{\varphi_0}(\mathcal{X}), L^{p_1),\lambda}_{\varphi_1}(\mathcal{X}), \theta\rangle$ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal{X}$ is the generalized grand Morrey space $L^{p),\lambda}_{\varphi}(\mathcal{X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces., Yi Liu, Wen Yuan., and Obsahuje bibliografické odkazy
We investigate the invariant rings of two classes of finite groups $G\leq{\rm GL}(n,F_q)$ which are generated by a number of generalized transvections with an invariant subspace $H$ over a finite field $F_q$ in the modular case. We name these groups generalized transvection groups. One class is concerned with a given invariant subspace which involves roots of unity. Constructing quotient groups and tensors, we deduce the invariant rings and study their Cohen-Macaulay and Gorenstein properties. The other is concerned with different invariant subspaces which have the same dimension. We provide a explicit classification of these groups and calculate their invariant rings., Xiang Han, Jizhu Nan, Chander K. Gupta., and Obsahuje bibliografické odkazy
We investigate isometric composition operators on the weighted Dirichlet space {D_\alpha } with standard weights {(1 - {\left| z \right|^2})^\alpha },\alpha > - 1 . The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space D. We solve some of these but not in general. We also investigate the situation when {D_\alpha } is equipped with another equivalent norm., Shi-An Han, Ze-Hua Zhou., and Obsahuje seznam literatury