In Leymus chinensis, mild water stress (soil moisture 60-65 % of field capacity) had no significant effects on nitrogen metabolism, photosynthesis, and chlorophyll fluorescence. Severe water stress (35-40 %) significantly decreased the activities of nitrate reductase, glutamine synthetase, and glutamate dehydrogenase, net photosynthetic rate, stomatal conductance, transpiration rate, maximal efficiency of photosystem 2 photochemistry (Fv/Fm), actual quantum yield, and photochemical quenching, but increased the endopeptidase activity and malondialdehyde contents. The adverse effects on photosynthesis and N metabolism were markedly greater in reproductive shoots than in vegetative shoots. and Z. Z. Xu, G. S. Zhou.
Black cumin (Nigella sativa L.) seeds were surface-sterilized and soaked for 5, 10, or 15 h in 1, 10, or 100 μM aqueous solution of kinetin (KIN). The potted plants were then analyzed at 30, 50, and 70 days after emergence (DAE) for dry mass (DM), leaf area (LA), chlorophyll (Chl) content, stomatal conductance (g s), carbonic anhydrase (CA), and nitrate reductase (NR) activity, total protein content, and net photosynthetic rate (PN). Capsule number and seed yield were determined at harvest (90 DAE). Treatment with the growth regulator was found to appreciably enhance all the determinants, with most prominent results being obtained following 10-h soaking with 10 μM KIN, in which case the values for DM, LA,
PN, CA and NR activity, and seed yield were elevated by 55, 63, 43, 38, 29, and 23% respectively over the control at the 50-day stage. and S. H. Shah.
The leaves of 29-d-old plants of Brassica juncea Czern & Coss cv. Varuna were sprayed with 10-6 or 10-8 M aqueous solutions of indole-3-yl-acetic acid (IAA) or its substituted derivatives 4-Cl-IAA, 7-Cl-IAA, and 4,7-Cl2-IAA. All the auxins improved the vegetative growth and seed yield at harvest compared with those sprayed with de-ionised water (control). 4-Cl-IAA was most prominent in its effect, generating 21.6, 39.7, 61.0, 35.0, 65.5, and 56.2% higher values for dry mass, leaf chlorophyll content, carbonic anhydrase (E.C. 4.2.1.1) and nitrate reductase (E.C. 1.6.6.1) activities, net photosynthetic rate, and carboxylation efficiency, respectively, in 60-d-old plants. It also enhanced the seed yield by 31.1% over the control. The order of response of the plants to various auxins was 4-Cl IAA ≥ 7-Cl IAA > 4,7-Cl2 IAA = IAA > control.
Seedlings of tropical leguminous tree Samanea saman (Jacq.) Merrill were exposed for 7 d to acidic mist (AM, induced by H2SO4) of pH 5.6, 4.0, and 2.0. AM significantly reduced seedling growth (root and shoot length, leaf density, leaf area, fresh and dry mass accumulation) and photosynthetic activities. In thylakoids isolated from leaves treated at pH 4.0 and 2.0 a decrease in the activities of photosystem (PS) 2 and whole chain electron transport was observed, but PS1 activity did not change. When the seedlings were subsequently sprayed with triacontanol (TRIA), the AM effect was partially or completely reversed indicating that TRIA can protect from AM effects. The artificial electron donors, di-phenylcarbazide (DPC) and hydroxylamine (NH2OH), markedly restored the loss of PS2 activity in AM (pH 2.0) treated leaves. This is the first report of alleviating the AM by TRIA in tropical tree seedlings. and K. Muthuchelian, V. Meenakshi, N. Nedunchezhian.
Effect of selenium on leaf senescence was studied in oilseed rape plants treated with 10 μM Na2SeO4 at a rosette growth stage. In addition to developmental senescence, N deficiency and leaf detachment were used for induction of senescence. Nonphotochemical quenching declined in old leaves as senescence became more advancing but rose progressively in the plants supplied by Se. The total carbohydrate and protein pools decreased with leaf age, while increased by the Se treatment. However, during senescence induced by N deficiency, Se did not change remarkably the C and N metabolism, but delayed senescence mainly through protection of plants from photoinhibitory effects. After detachment, untreated leaves became chlorotic and necrotic, while the Se-treated ones remained fairly green. Our results demonstrated that Se delayed leaf senescence by a maintaining or even improving photochemical activities. During developmental senescence, the Se effect on the extending life span of the leaves was additionally linked to the metabolic regulation of senescence., S. Rahmat, R. Hajiboland, N. Sadeghzade., and Obsahuje bibliografii
a1_Different parameters that vary during leaf development may be affected by light intensity. To study the influence of different light intensities on primary leaf senescence, sunflower (Helianthus annuus L.) plants were grown for 50 days under two photon flux density (PFD) conditions, namely high irradiance (HI) at 350 μmol(photon) m-2 s-1 and low irradiance (LI) at 125 μmol(photon) m-2 s-1. Plants grown under HI exhibited greater specific leaf mass referred to dry mass, leaf area and soluble protein at the beginning of the leaf development. This might have resulted from the increased CO2 fixation rate observed in HI plants, during early development of primary leaves. Chlorophyll a and b contents in HI plants were lower than in LI plants in young leaves. By contrast, the carotenoid content was significantly higher in HI plants. Glucose concentration increased with the leaf age in both treatments (HI and LI), while the starch content decreased sharply in HI plants, but only slightly in LI plants. Glucose contents were higher in HI plants than in LI plants; the differences were statistically significant (p<0.05) mainly at the beginning of the leaf senescence. On the other hand, starch contents were higher in HI plants than in LI plants, throughout the whole leaf development period. Nitrate reductase (NR) activity decreased with leaf ageing in both treatments. However, the NR activation state was higher during early leaf development and decreased more markedly in senescent leaves in plants grown under HI. GS activity also decreased during sunflower leaf ageing under both PFD conditions, but HI plants showed higher GS activities than LI plants. Aminating and deaminating activities of glutamate dehydrogenase (GDH) peaked at 50 days (senescent leaves). GDH deaminating activity increased 5-fold during the leaf development in HI plants, but only 2-fold in LI plants., a2_ The plants grown under HI exhibited considerable oxidative stress in vivo during the leaf senescence, as revealed by the substantial H2O2 accumulation and the sharply decrease in the antioxidant enzymes, catalase and ascorbate peroxidase, in comparison with LI plants. Probably, systemic signals triggered by a high PFD caused early senescence and diminished oxidative protection in primary leaves of sunflower plants as a result., L. De la Mata ... [et al.]., and Obsahuje bibliografii
Cowpea [Vigna unguiculata (L.) Walp. cv. Co 4] seedlings were subjected to a weighted irradiance of 3.2 W m-2 s-1 of biologically effective ultraviolet-B radiation (UV-B, 280-320 nm) and the changes in the kinetic and other characteristics of nitrite reductase (NiR) were recorded. The activity of NiR was hampered by 19 % under UV-B irradiation compared to the control. The UV-B treated plants required higher concentrations of nitrate for the induction of NiR synthesis than the controls. The NiR activity decay kinetics showed that the UV-B treatment significantly lowers the t1/2 of the enzyme, thereby indicating a reduced rate of enzyme turnover. The comparison of kinetic characteristics of nitrate reductase (NR) and NiR under UV-B treatment showed that NiR was not so sensitive to UV-B radiation as NR. As shown by enzyme turnover rates, NiR extracted from plants irradiated by UV-B in situ was less sensitive to UV-B radiation than the enzyme extract subjected to in vitro UV-B irradiation. Though NiR was less damaged by UV-B treatment than NR, subtle changes occurred in its kinetic characteristics. and T. Balakumar ... [et al.].