Flood risk management is founded on the regular assessment of damage potential. A significant parameter for assessing damage potential is the number of at-risk objects. However, data sets on exposure are often incomplete and/or lack time-references. Airborne remote sensing data, such as orthophotos, offers a regularly-updated, time-referenced depiction of land use. As such, remote sensing data compensates for incomplete data sources (such as digital cadastral maps). Orthophotos can even be used to analyze the temporal dynamics of flood damage potential, providing that timereferenced information is available for multiple time points. This paper describes a method for integrating orthophotos into flood risk analyses. In Austria, orthophotos are updated every three years, allowing their integration into cyclical flood risk assessments. The results of a case study presented in this paper demonstrate that orthophotos are most useful where other data sources, such as digital cadastral maps, are incomplete. In such situations, orthophotos lead to a significant increase in estimated damage potential. Orthophoto analysis allows damage potentials to be re-assessed at regular intervals, another major advantage over digital cadastral maps. Orthophoto analysis thus supports the evaluation of flood risk management options.