The collection consists of queries and documents provided by the Qwant search Engine (https://www.qwant.com). The queries, which were issued by the users of Qwant, are based on the selected trending topics. The documents in the collection were selected with respect to these queries using the Qwant click model. Apart from the documents selected using this model, the collection also contains randomly selected documents from the Qwant index. All the data were collected over June 2022. In total, the collection contains 672 train queries, with corresponding 9656 assessments coming from the Qwant click model, and 98 heldout queries. The set of documents consist of 1,570,734 downloaded, cleaned and filtered Web Pages. Apart from their original French versions, the collection also contains translations of the webpages and queries into English. The collection serves as the official training collection for the 2023 LongEval Information Retrieval Lab (https://clef-longeval.github.io/) organised at CLEF.
Data
-----
We have collected English-Odia parallel data for the purposes of NLP
research of the Odia language.
The data for the parallel corpus was extracted from existing parallel
corpora such as OdiEnCorp 1.0 and PMIndia, and books which contain both
English and Odia text such as grammar and bilingual literature books. We
also included parallel text from multiple public websites such as Odia
Wikipedia, Odia digital library, and Odisha Government websites.
The parallel corpus covers many domains: the Bible, other literature,
Wiki data relating to many topics, Government policies, and general
conversation. We have processed the raw data collected from the books,
websites, performed sentence alignments (a mix of manual and automatic
alignments) and released the corpus in a form suitable for various NLP
tasks.
Corpus Format
-------------
OdiEnCorp 2.0 is stored in simple tab-delimited plain text files, each
with three tab-delimited columns:
- a coarse indication of the domain
- the English sentence
- the corresponding Odia sentence
The corpus is shuffled at the level of sentence pairs.
The coarse domains are:
books ... prose text
dict ... dictionaries and phrasebooks
govt ... partially formal text
odiencorp10 ... OdiEnCorp 1.0 (mix of domains)
pmindia ... PMIndia (the original corpus)
wikipedia ... sentences and phrases from Wikipedia
Data Statistics
---------------
The statistics of the current release are given below.
Note that the statistics differ from those reported in the paper due to
deduplication at the level of sentence pairs. The deduplication was
performed within each of the dev set, test set and training set and
taking the coarse domain indication into account. It is still possible
that the same sentence pair appears more than once within the same set
(dev/test/train) if it came from different domains, and it is also
possible that a sentence pair appears in several sets (dev/test/train).
Parallel Corpus Statistics
--------------------------
Dev Dev Dev Test Test Test Train Train Train
Sents # EN # OD Sents # EN # OD Sents # EN # OD
books 3523 42011 36723 3895 52808 45383 3129 40461 35300
dict 3342 14580 13838 3437 14807 14110 5900 21591 20246
govt - - - - - - 761 15227 13132
odiencorp10 947 21905 19509 1259 28473 24350 26963 704114 602005
pmindia 3836 70282 61099 3836 68695 59876 30687 551657 486636
wikipedia 1896 9388 9385 1917 21381 20951 1930 7087 7122
Total 13544 158166 140554 14344 186164 164670 69370 1340137 1164441
"Sents" are the counts of the sentence pairs in the given set (dev/test/train)
and domain (books/dict/...).
"# EN" and "# OD" are approximate counts of words (simply space-delimited,
without tokenization) in English and Odia
The total number of sentence pairs (lines) is 13544+14344+69370=97258. Ignoring
the set and domain and deduplicating again, this number drops to 94857.
Citation
--------
If you use this corpus, please cite the following paper:
@inproceedings{parida2020odiencorp,
title={OdiEnCorp 2.0: Odia-English Parallel Corpus for Machine Translation},
author={Parida, Shantipriya and Dash, Satya Ranjan and Bojar, Ond{\v{r}}ej and Motlicek, Petr and Pattnaik, Priyanka and Mallick, Debasish Kumar},
booktitle={Proceedings of the WILDRE5--5th Workshop on Indian Language Data: Resources and Evaluation},
pages={14--19},
year={2020}
}
The January 2018 release of the ParaCrawl is the first version of the corpus. It contains parallel corpora for 11 languages paired with English, crawled from a large number of web sites. The selection of websites is based on CommonCrawl, but ParaCrawl is extracted from a brand new crawl which has much higher coverage of these selected websites than CommonCrawl. Since the data is fairly raw, it is released with two quality metrics that can be used for corpus filtering. An official "clean" version of each corpus uses one of the metrics. For more details and raw data download please visit: http://paracrawl.eu/releases.html
ParCorFull is a parallel corpus annotated with full coreference chains that has been created to address an important problem that machine translation and other multilingual natural language processing (NLP) technologies face -- translation of coreference across languages. Our corpus contains parallel texts for the language pair English-German, two major European languages. Despite being typologically very close, these languages still have systemic differences in the realisation of coreference, and thus pose problems for multilingual coreference resolution and machine translation. Our parallel corpus covers the genres of planned speech (public lectures) and newswire. It is richly annotated for coreference in both languages, including annotation of both nominal coreference and reference to antecedents expressed as clauses, sentences and verb phrases. This resource supports research in the areas of natural language processing, contrastive linguistics and translation studies on the mechanisms involved in coreference translation in order to develop a better understanding of the phenomenon.
PAWS is a multi-lingual parallel treebank with coreference annotation. It consists of English texts from the Wall Street Journal translated into Czech, Russian and Polish. In addition, the texts are syntactically parsed and word-aligned. PAWS is based on PCEDT 2.0 and continues the tradition of multilingual treebanks with coreference annotation. PAWS offers linguistic material that can be further leveraged in cross-lingual studies, especially on coreference.
CzEng is a sentence-parallel Czech-English corpus compiled at the Institute of Formal and Applied Linguistics (ÚFAL). While the full CzEng 2.0 is freely available for non-commercial research purposes from the project website (https://ufal.mff.cuni.cz/czeng), this release contains only the original monolingual parts of news text (csmono 53M and enmono 79M sentences) with automatic (synthetic) translations by CUBBITT.
See the attached README for additional details such as the file format.
This is the first release of the UFAL Parallel Corpus of North Levantine, compiled by the Institute of Formal and Applied Linguistics (ÚFAL) at Charles University within the Welcome project (https://welcome-h2020.eu/). The corpus consists of 120,600 multiparallel sentences in English, French, German, Greek, Spanish, and Standard Arabic selected from the OpenSubtitles2018 corpus [1] and manually translated into the North Levantine Arabic language. The corpus was created for the purpose of training machine translation for North Levantine and the other languages.
We provide the Vietnamese version of the multi-lingual test set from WMT 2013 [1] competition. The Vietnamese version was manually translated from English. For completeness, this record contains the 3000 sentences in all the WMT 2013 original languages (Czech, English, French, German, Russian and Spanish), extended with our Vietnamese version. Test set is used in [2] to evaluate translation between Czech, English and Vietnamese.
References
1. http://www.statmt.org/wmt13/evaluation-task.html
2. Duc Tam Hoang and Ondřej Bojar, The Prague Bulletin of Mathematical Linguistics. Volume 104, Issue 1, Pages 75--86, ISSN 1804-0462. 9/2015