Gas exchange and fluorescence parameters were measured simultaneously in two Zea mays L. cultivars (Liri and 121C D8) to assess the relationship between the quantum yield of electron transport (ΦPS2) and the quantum yield of CO2 assimilation (ΦCO2) in response to photosynthetic photon flux density (PPFD). The cv. Liri was grown under controlled environmental conditions in a climate chamber (CC) while cv. 121C D8 was grown in CC as well as outdoors (OT). By exposing the two maize cultivars grown in CC to an increasing PPFD, higher photosynthetic and photochemical rates were evidenced in cv. Liri than in cv. 121C D8. In Liri plants the ΦPS2/ΦCO2 ratio increased progressively up to 27 with increasing PPFD. This suggests that the reductive power was more utilised in non-assimilatory processes than in CO2 assimilation at high PPFD. On the contrary, by exposing 121C D8 plants to increasing PPFD, ΦPS2/ΦCO2 was fairly constant (around 11-13), indicating that the electron transport rate was tightly down regulated by CO2 assimilation. Although no significant differences were found between ΦPS2/ΦCO2 of the 121C D8 maize grown under CC and OT by exposing them to high PPFD, the photosynthetic rate and photochemical rates were higher in OT maize plants. and N. D'Ambrosio, C. Arena, A. Virzo de Santo.
A mixture of ryegrass (Lolium italicum A. Braun) and clover (Trifolium alexandrinum L.) was sown in Eboli (Salerno, Southern Italy) in September 2007. Crop growth, leaf and canopy gas exchange and ecophysiological traits were monitored throughout the growth cycle. The gross primary production (GPP) was not affected by air temperature (T air); on the contrary the ecosystem respiration (R eco) decreased as T air decreased while net ecosystem CO2 exchange (NEE) increased. When was normalized with leaf area index (LAI), GPP decreased with T air, a likely response to cold that down-regulated canopy photosynthesis in order to optimize the light use at low winter temperatures. Net photosynthetic rates (PN), the effective quantum yield of PSII (ΦPSII) and photosynthetic pigment content were higher in clover than ryegrass, in relation to the higher leaf N content. The lower ΦPSII in ryegrass was linked to lower photochemical quenching coefficient (qP) values, due to a reduced number of reaction centres, in agreement with the lowest Chl a content. This behaviour can be considered as an adaptive strategy to cold to avoid photooxidative damage at low temperature rather than an impairment of PSII complexes., L. Vitale ... [et al.]., and V klíčových slovech chybně uvedené jméno Lolium italicum A. Barum
Photosynthetic responses of potato (Solanum tuberosum L. cv. Chunzao) were examined during potato virus Y (PVYNTN) infection. PVYNTN infection significantly reduced net photosynthetic rate and stomatal conductance, but had little influence on intercellular CO2 concentration. As the disease developed, the maximum carboxylation velocity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the maximum electron transport rate contributing to ribulose-1,5-bisphosphate regeneration gradually decreased, followed by substantial reductions in the relative quantum efficiency of photosystem 2 (PS2) electron transport, the efficiency of excitation energy capture by open PS2 reaction centres, and photochemical quenching, but not in sustained photoinhibition. Thus PVYNTN depressed photosynthesis mainly by interfering with the enzymatic processes in the Calvin cycle which resulted in a down-regulation of electron transport. and Y. H. Zhou ... [et al.].
The aim of this study was to evaluate the photochemistry of Luffa cylindrica (L.) Roem in fungal biocontrol interacting treatments. Healthy plants were infected with Pythium aphanidermatum before the biocontrol application. Biocontrol agents were selected in preliminary Petri-plate experiment evaluation against causative agent P. aphanidermatum. Photosynthetic performance traits were studied. We found that P. aphanidermatum infection caused significant reduction in photosynthetic performance, pigments, and in maximum quantum yield of primary photochemistry, photochemical quenching, and electron transport rate with increase in nonphotochemical quenching as compared with non-infected control. However, application of biocontrol agents substantially improved maximum quantum yield of PSII, performance index, and total content of photosynthetic pigments in infected plants. The fluorescence intensity was used for quantifying the antagonist effect of biocontrol agents on infected plant leaves., H. Amrina, S. Shahzad, Z. S. Siddiqui., and Obsahuje bibliografii